|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "ec1d7a9a", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Document Comparison\n", |
| 9 | + "\n", |
| 10 | + "This notebook shows how to use an agent to compare two documents.\n", |
| 11 | + "\n", |
| 12 | + "The high level idea is we will create a question-answering chain for each document, and then use that " |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 1, |
| 18 | + "id": "8632a37c", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stderr", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.4) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n", |
| 26 | + " warnings.warn(\n" |
| 27 | + ] |
| 28 | + } |
| 29 | + ], |
| 30 | + "source": [ |
| 31 | + "from pydantic import BaseModel, Field\n", |
| 32 | + "\n", |
| 33 | + "from langchain.chat_models import ChatOpenAI\n", |
| 34 | + "from langchain.agents import Tool\n", |
| 35 | + "from langchain.embeddings.openai import OpenAIEmbeddings\n", |
| 36 | + "from langchain.text_splitter import CharacterTextSplitter\n", |
| 37 | + "from langchain.vectorstores import FAISS\n", |
| 38 | + "from langchain.document_loaders import PyPDFLoader\n", |
| 39 | + "from langchain.chains import RetrievalQA" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 2, |
| 45 | + "id": "64f19917", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "class DocumentInput(BaseModel):\n", |
| 50 | + " question: str = Field()\n", |
| 51 | + "\n", |
| 52 | + "\n", |
| 53 | + "llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0613\")\n", |
| 54 | + "\n", |
| 55 | + "tools = []\n", |
| 56 | + "files = [\n", |
| 57 | + " # https://abc.xyz/investor/static/pdf/2023Q1_alphabet_earnings_release.pdf\n", |
| 58 | + " {\n", |
| 59 | + " \"name\": \"alphabet-earnings\", \n", |
| 60 | + " \"path\": \"/Users/harrisonchase/Downloads/2023Q1_alphabet_earnings_release.pdf\",\n", |
| 61 | + " }, \n", |
| 62 | + " # https://digitalassets.tesla.com/tesla-contents/image/upload/IR/TSLA-Q1-2023-Update\n", |
| 63 | + " {\n", |
| 64 | + " \"name\": \"tesla-earnings\", \n", |
| 65 | + " \"path\": \"/Users/harrisonchase/Downloads/TSLA-Q1-2023-Update.pdf\"\n", |
| 66 | + " }\n", |
| 67 | + "]\n", |
| 68 | + "\n", |
| 69 | + "for file in files:\n", |
| 70 | + " loader = PyPDFLoader(file[\"path\"])\n", |
| 71 | + " pages = loader.load_and_split()\n", |
| 72 | + " text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", |
| 73 | + " docs = text_splitter.split_documents(pages)\n", |
| 74 | + " embeddings = OpenAIEmbeddings()\n", |
| 75 | + " retriever = FAISS.from_documents(docs, embeddings).as_retriever()\n", |
| 76 | + " \n", |
| 77 | + " # Wrap retrievers in a Tool\n", |
| 78 | + " tools.append(\n", |
| 79 | + " Tool(\n", |
| 80 | + " args_schema=DocumentInput,\n", |
| 81 | + " name=file[\"name\"], \n", |
| 82 | + " description=f\"useful when you want to answer questions about {file['name']}\",\n", |
| 83 | + " func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever)\n", |
| 84 | + " )\n", |
| 85 | + " )" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": 3, |
| 91 | + "id": "eca02549", |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [], |
| 94 | + "source": [ |
| 95 | + "from langchain.agents import initialize_agent\n", |
| 96 | + "from langchain.agents import AgentType" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 4, |
| 102 | + "id": "c4d56c25", |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [ |
| 105 | + { |
| 106 | + "name": "stdout", |
| 107 | + "output_type": "stream", |
| 108 | + "text": [ |
| 109 | + "\n", |
| 110 | + "\n", |
| 111 | + "\u001b[1m> Entering new chain...\u001b[0m\n", |
| 112 | + "\u001b[32;1m\u001b[1;3m\n", |
| 113 | + "Invoking: `alphabet-earnings` with `{'question': 'revenue'}`\n", |
| 114 | + "\n", |
| 115 | + "\n", |
| 116 | + "\u001b[0m\u001b[36;1m\u001b[1;3m{'query': 'revenue', 'result': 'The revenue for Alphabet Inc. in the first quarter of 2023 was $69,787 million.'}\u001b[0m\u001b[32;1m\u001b[1;3m\n", |
| 117 | + "Invoking: `tesla-earnings` with `{'question': 'revenue'}`\n", |
| 118 | + "\n", |
| 119 | + "\n", |
| 120 | + "\u001b[0m\u001b[33;1m\u001b[1;3m{'query': 'revenue', 'result': 'Total revenue for Q1-2023 was $23.3 billion.'}\u001b[0m\u001b[32;1m\u001b[1;3mAlphabet Inc. had more revenue than Tesla. In the first quarter of 2023, Alphabet Inc. had a revenue of $69,787 million, while Tesla had a revenue of $23.3 billion.\u001b[0m\n", |
| 121 | + "\n", |
| 122 | + "\u001b[1m> Finished chain.\u001b[0m\n" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "data": { |
| 127 | + "text/plain": [ |
| 128 | + "{'input': 'did alphabet or tesla have more revenue?',\n", |
| 129 | + " 'output': 'Alphabet Inc. had more revenue than Tesla. In the first quarter of 2023, Alphabet Inc. had a revenue of $69,787 million, while Tesla had a revenue of $23.3 billion.'}" |
| 130 | + ] |
| 131 | + }, |
| 132 | + "execution_count": 4, |
| 133 | + "metadata": {}, |
| 134 | + "output_type": "execute_result" |
| 135 | + } |
| 136 | + ], |
| 137 | + "source": [ |
| 138 | + "llm = ChatOpenAI(\n", |
| 139 | + " temperature=0,\n", |
| 140 | + " model=\"gpt-3.5-turbo-0613\", \n", |
| 141 | + ")\n", |
| 142 | + "\n", |
| 143 | + "agent = initialize_agent(\n", |
| 144 | + " agent=AgentType.OPENAI_FUNCTIONS,\n", |
| 145 | + " tools=tools,\n", |
| 146 | + " llm=llm,\n", |
| 147 | + " verbose=True,\n", |
| 148 | + ")\n", |
| 149 | + "\n", |
| 150 | + "agent({\"input\": \"did alphabet or tesla have more revenue?\"})" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": null, |
| 156 | + "id": "6db4c853", |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [] |
| 160 | + } |
| 161 | + ], |
| 162 | + "metadata": { |
| 163 | + "kernelspec": { |
| 164 | + "display_name": "Python 3 (ipykernel)", |
| 165 | + "language": "python", |
| 166 | + "name": "python3" |
| 167 | + }, |
| 168 | + "language_info": { |
| 169 | + "codemirror_mode": { |
| 170 | + "name": "ipython", |
| 171 | + "version": 3 |
| 172 | + }, |
| 173 | + "file_extension": ".py", |
| 174 | + "mimetype": "text/x-python", |
| 175 | + "name": "python", |
| 176 | + "nbconvert_exporter": "python", |
| 177 | + "pygments_lexer": "ipython3", |
| 178 | + "version": "3.9.1" |
| 179 | + } |
| 180 | + }, |
| 181 | + "nbformat": 4, |
| 182 | + "nbformat_minor": 5 |
| 183 | +} |
0 commit comments