|
| 1 | +from __future__ import print_function |
| 2 | +import argparse |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +import torch.nn.functional as F |
| 6 | +import torch.optim as optim |
| 7 | +from torchvision import datasets, transforms |
| 8 | +from torch.autograd import Variable |
| 9 | +from tensorboardX import SummaryWriter |
| 10 | +writer = SummaryWriter('runs') |
| 11 | +# Training settings |
| 12 | +parser = argparse.ArgumentParser(description='PyTorch MNIST Example') |
| 13 | +parser.add_argument('--batch-size', type=int, default=64, metavar='N', |
| 14 | + help='input batch size for training (default: 64)') |
| 15 | +parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', |
| 16 | + help='input batch size for testing (default: 1000)') |
| 17 | +parser.add_argument('--epochs', type=int, default=10, metavar='N', |
| 18 | + help='number of epochs to train (default: 10)') |
| 19 | +parser.add_argument('--lr', type=float, default=0.01, metavar='LR', |
| 20 | + help='learning rate (default: 0.01)') |
| 21 | +parser.add_argument('--momentum', type=float, default=0.5, metavar='M', |
| 22 | + help='SGD momentum (default: 0.5)') |
| 23 | +parser.add_argument('--no-cuda', action='store_true', default=False, |
| 24 | + help='disables CUDA training') |
| 25 | +parser.add_argument('--seed', type=int, default=1, metavar='S', |
| 26 | + help='random seed (default: 1)') |
| 27 | +parser.add_argument('--log-interval', type=int, default=10, metavar='N', |
| 28 | + help='how many batches to wait before logging training status') |
| 29 | +args = parser.parse_args() |
| 30 | +args.cuda = not args.no_cuda and torch.cuda.is_available() |
| 31 | + |
| 32 | +torch.manual_seed(args.seed) |
| 33 | +if args.cuda: |
| 34 | + torch.cuda.manual_seed(args.seed) |
| 35 | + |
| 36 | + |
| 37 | +kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} |
| 38 | +train_loader = torch.utils.data.DataLoader( |
| 39 | + datasets.MNIST('../data', train=True, download=True, |
| 40 | + transform=transforms.Compose([ |
| 41 | + transforms.ToTensor(), |
| 42 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 43 | + ])), |
| 44 | + batch_size=args.batch_size, shuffle=True, **kwargs) |
| 45 | +test_loader = torch.utils.data.DataLoader( |
| 46 | + datasets.MNIST('../data', train=False, transform=transforms.Compose([ |
| 47 | + transforms.ToTensor(), |
| 48 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 49 | + ])), |
| 50 | + batch_size=args.batch_size, shuffle=True, **kwargs) |
| 51 | + |
| 52 | + |
| 53 | +class Net(nn.Module): |
| 54 | + def __init__(self): |
| 55 | + super(Net, self).__init__() |
| 56 | + self.conv1 = nn.Conv2d(1, 10, kernel_size=5) |
| 57 | + self.conv2 = nn.Conv2d(10, 20, kernel_size=5) |
| 58 | + self.conv2_drop = nn.Dropout2d() |
| 59 | + self.fc1 = nn.Linear(320, 50) |
| 60 | + self.fc2 = nn.Linear(50, 10) |
| 61 | + |
| 62 | + def forward(self, x): |
| 63 | + x = F.relu(F.max_pool2d(self.conv1(x), 2)) |
| 64 | + x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) |
| 65 | + x = x.view(-1, 320) |
| 66 | + x = F.relu(self.fc1(x)) |
| 67 | + x = F.dropout(x, training=self.training) |
| 68 | + x = self.fc2(x) |
| 69 | + return F.log_softmax(x) |
| 70 | + |
| 71 | +model = Net() |
| 72 | +if args.cuda: |
| 73 | + model.cuda() |
| 74 | + |
| 75 | +print('Learning rate: {} Momentum: {}'.format(args.lr, args.momentum)) |
| 76 | +optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) |
| 77 | + |
| 78 | +def train(epoch): |
| 79 | + model.train() |
| 80 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 81 | + if args.cuda: |
| 82 | + data, target = data.cuda(), target.cuda() |
| 83 | + data, target = Variable(data), Variable(target) |
| 84 | + optimizer.zero_grad() |
| 85 | + output = model(data) |
| 86 | + loss = F.nll_loss(output, target) |
| 87 | + loss.backward() |
| 88 | + optimizer.step() |
| 89 | + if batch_idx % args.log_interval == 0: |
| 90 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}'.format( |
| 91 | + epoch, batch_idx * len(data), len(train_loader.dataset), |
| 92 | + 100. * batch_idx / len(train_loader), loss.item())) |
| 93 | + niter = epoch*len(train_loader)+batch_idx |
| 94 | + writer.add_scalar('loss', loss.item(), niter) |
| 95 | + |
| 96 | +def test(epoch): |
| 97 | + model.eval() |
| 98 | + test_loss = 0 |
| 99 | + correct = 0 |
| 100 | + for data, target in test_loader: |
| 101 | + if args.cuda: |
| 102 | + data, target = data.cuda(), target.cuda() |
| 103 | + data, target = Variable(data, volatile=True), Variable(target) |
| 104 | + output = model(data) |
| 105 | + test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss |
| 106 | + pred = output.data.max(1)[1] # get the index of the max log-probability |
| 107 | + correct += pred.eq(target.data).cpu().sum() |
| 108 | + |
| 109 | + test_loss /= len(test_loader.dataset) |
| 110 | + print('\naccuracy={:.4f}\n'.format(float(correct) / len(test_loader.dataset))) |
| 111 | + writer.add_scalar('accuracy', float(correct) / len(test_loader.dataset), epoch) |
| 112 | + |
| 113 | + |
| 114 | +for epoch in range(1, args.epochs + 1): |
| 115 | + train(epoch) |
| 116 | + test(epoch) |
0 commit comments