@@ -77,10 +77,11 @@ def collapsed_table(language: str, df: pl.DataFrame) -> str:
77
77
)
78
78
eval_df = eval_df .with_columns (
79
79
recall = (
80
- pl .col ("image_retrieval_recall@1" ) + pl .col ("image_retrieval_recall@5" ) + pl .col ("image_retrieval_recall@10" )
81
- )
82
- / 3
83
- )
80
+ (pl .col ("image_retrieval_recall@1" ) + pl .col ("image_retrieval_recall@5" ) + pl .col ("image_retrieval_recall@10" ))
81
+ * (100 / 3 )
82
+ ).round (2 )
83
+ ).collect ()
84
+ eval_df .write_parquet ("model_info.parquet" )
84
85
85
86
pareto_front = eval_df .join_where (
86
87
eval_df .select ("language" , "peak_rss" , "exec_time_ms" , "recall" ).rename (
@@ -103,14 +104,11 @@ def collapsed_table(language: str, df: pl.DataFrame) -> str:
103
104
)
104
105
eval_df = eval_df .join (pareto_front , on = ["pretrained_model" , "language" ], how = "left" )
105
106
eval_df = eval_df .with_columns (is_pareto = pl .col ("recall_other" ).is_null ())
106
- eval_df = (
107
- eval_df .drop ("peak_rss_other" , "exec_time_ms_other" , "recall_other" , "language_other" )
108
- .unique (subset = ["pretrained_model" , "language" ])
109
- .collect ()
107
+ eval_df = eval_df .drop ("peak_rss_other" , "exec_time_ms_other" , "recall_other" , "language_other" ).unique (
108
+ subset = ["pretrained_model" , "language" ]
110
109
)
111
- eval_df .write_parquet ("model_info.parquet" )
112
110
113
- eval_df = eval_df .filter (pl .col ("recall" ) >= 0.2 )
111
+ eval_df = eval_df .filter (pl .col ("recall" ) >= 20 )
114
112
eval_df = eval_df .select (
115
113
pl .col ("pretrained_model" ).alias ("Model" ),
116
114
(pl .col ("peak_rss" ) / 1024 ).round ().cast (pl .UInt32 ).alias ("Memory (MiB)" ),
@@ -119,7 +117,7 @@ def collapsed_table(language: str, df: pl.DataFrame) -> str:
119
117
# pl.col("image_retrieval_recall@1").mul(100).round(2).alias("Recall@1 (%)"),
120
118
# pl.col("image_retrieval_recall@5").mul(100).round(2).alias("Recall@5 (%)"),
121
119
# pl.col("image_retrieval_recall@10").mul(100).round(2).alias("Recall@10 (%)"),
122
- pl .col ("recall" ).mul ( 100 ). round ( 2 ). alias ("Recall (%)" ),
120
+ pl .col ("recall" ).alias ("Recall (%)" ),
123
121
pl .when ("is_pareto" ).then (pl .lit ("✅" )).otherwise (pl .lit ("❌" )).alias ("Pareto Optimal" ),
124
122
)
125
123
eval_df = eval_df .sort ("Recall (%)" , "Memory (MiB)" , descending = [True , False ])
0 commit comments