diff --git a/examples/README.md b/examples/README.md index e4b157680259..ad6105813875 100644 --- a/examples/README.md +++ b/examples/README.md @@ -22,7 +22,7 @@ The command to train a DDPM UNet model on the Oxford Flowers dataset: ```bash accelerate launch train_unconditional.py \ - --dataset="huggan/flowers-102-categories" \ + --dataset_name="huggan/flowers-102-categories" \ --resolution=64 \ --output_dir="ddpm-ema-flowers-64" \ --train_batch_size=16 \ @@ -46,7 +46,7 @@ The command to train a DDPM UNet model on the Pokemon dataset: ```bash accelerate launch train_unconditional.py \ - --dataset="huggan/pokemon" \ + --dataset_name="huggan/pokemon" \ --resolution=64 \ --output_dir="ddpm-ema-pokemon-64" \ --train_batch_size=16 \ @@ -62,3 +62,68 @@ An example trained model: https://huggingface.co/anton-l/ddpm-ema-pokemon-64 A full training run takes 2 hours on 4xV100 GPUs. + + +### Using your own data + +To use your own dataset, there are 2 ways: +- you can either provide your own folder as `--train_data_dir` +- or you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument. + +Below, we explain both in more detail. + +#### Provide the dataset as a folder + +If you provide your own folders with images, the script expects the following directory structure: + +```bash +data_dir/xxx.png +data_dir/xxy.png +data_dir/[...]/xxz.png +``` + +In other words, the script will take care of gathering all images inside the folder. You can then run the script like this: + +```bash +accelerate launch train_unconditional.py \ + --train_data_dir \ + +``` + +Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects. + +#### Upload your data to the hub, as a (possibly private) repo + +It's very easy (and convenient) to upload your image dataset to the hub using the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following: + +```python +from datasets import load_dataset + +# example 1: local folder +dataset = load_dataset("imagefolder", data_dir="path_to_your_folder") + +# example 2: local files (suppoted formats are tar, gzip, zip, xz, rar, zstd) +dataset = load_dataset("imagefolder", data_files="path_to_zip_file") + +# example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd) +dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip") + +# example 4: providing several splits +dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]}) +``` + +`ImageFolder` will create an `image` column containing the PIL-encoded images. + +Next, push it to the hub! + +```python +# assuming you have ran the huggingface-cli login command in a terminal +dataset.push_to_hub("name_of_your_dataset") + +# if you want to push to a private repo, simply pass private=True: +dataset.push_to_hub("name_of_your_dataset", private=True) +``` + +and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub. + +More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets). diff --git a/examples/train_unconditional.py b/examples/train_unconditional.py index 3d260c6faeed..79c448f05e35 100644 --- a/examples/train_unconditional.py +++ b/examples/train_unconditional.py @@ -75,7 +75,17 @@ def main(args): Normalize([0.5], [0.5]), ] ) - dataset = load_dataset(args.dataset, split="train") + + if args.dataset_name is not None: + dataset = load_dataset( + args.dataset_name, + args.dataset_config_name, + cache_dir=args.cache_dir, + use_auth_token=True if args.use_auth_token else None, + split="train", + ) + else: + dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") def transforms(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] @@ -179,9 +189,12 @@ def transforms(examples): if __name__ == "__main__": parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument("--local_rank", type=int, default=-1) - parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories") - parser.add_argument("--output_dir", type=str, default="ddpm-flowers-64") + parser.add_argument("--dataset_name", type=str, default=None) + parser.add_argument("--dataset_config_name", type=str, default=None) + parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.") + parser.add_argument("--output_dir", type=str, default="ddpm-model-64") parser.add_argument("--overwrite_output_dir", action="store_true") + parser.add_argument("--cache_dir", type=str, default=None) parser.add_argument("--resolution", type=int, default=64) parser.add_argument("--train_batch_size", type=int, default=16) parser.add_argument("--eval_batch_size", type=int, default=16) @@ -201,6 +214,7 @@ def transforms(examples): parser.add_argument("--ema_power", type=float, default=3 / 4) parser.add_argument("--ema_max_decay", type=float, default=0.9999) parser.add_argument("--push_to_hub", action="store_true") + parser.add_argument("--use_auth_token", action="store_true") parser.add_argument("--hub_token", type=str, default=None) parser.add_argument("--hub_model_id", type=str, default=None) parser.add_argument("--hub_private_repo", action="store_true") @@ -222,4 +236,7 @@ def transforms(examples): if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank + if args.dataset_name is None and args.train_data_dir is None: + raise ValueError("You must specify either a dataset name from the hub or a train data directory.") + main(args)