Skip to content
This repository was archived by the owner on Feb 25, 2025. It is now read-only.

Commit 43882d0

Browse files
committed
address comments from ferhatb
1 parent ba642f4 commit 43882d0

File tree

2 files changed

+27
-26
lines changed

2 files changed

+27
-26
lines changed

lib/web_ui/lib/src/engine/surface/painting.dart

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -160,6 +160,7 @@ class SurfacePaint implements ui.Paint {
160160

161161
@override
162162
set strokeMiterLimit(double value) {
163+
assert(value != null); // ignore: unnecessary_null_comparison
163164
throw UnsupportedError('SurfacePaint.strokeMiterLimit');
164165
}
165166

lib/web_ui/lib/src/engine/surface/path.dart

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -829,39 +829,39 @@ class SurfacePath implements ui.Path {
829829

830830
double denom = x1 - (2 * cpX) + x2;
831831
if (denom.abs() > epsilon) {
832-
final num t1 = (x1 - cpX) / denom;
832+
final double t1 = (x1 - cpX) / denom;
833833
if ((t1 >= 0) && (t1 <= 1.0)) {
834834
// Solve (x,y) for curve at t = tx to find extrema
835-
final num tprime = 1.0 - t1;
836-
final num extremaX = (tprime * tprime * x1) +
835+
final double tprime = 1.0 - t1;
836+
final double extremaX = (tprime * tprime * x1) +
837837
(2 * t1 * tprime * cpX) +
838838
(t1 * t1 * x2);
839-
final num extremaY = (tprime * tprime * y1) +
839+
final double extremaY = (tprime * tprime * y1) +
840840
(2 * t1 * tprime * cpY) +
841841
(t1 * t1 * y2);
842842
// Expand bounds.
843-
minX = math.min(minX, extremaX as double);
843+
minX = math.min(minX, extremaX);
844844
maxX = math.max(maxX, extremaX);
845-
minY = math.min(minY, extremaY as double);
845+
minY = math.min(minY, extremaY);
846846
maxY = math.max(maxY, extremaY);
847847
}
848848
}
849849
// Now calculate dy/dt = 0
850850
denom = y1 - (2 * cpY) + y2;
851851
if (denom.abs() > epsilon) {
852-
final num t2 = (y1 - cpY) / denom;
852+
final double t2 = (y1 - cpY) / denom;
853853
if ((t2 >= 0) && (t2 <= 1.0)) {
854-
final num tprime2 = 1.0 - t2;
855-
final num extrema2X = (tprime2 * tprime2 * x1) +
854+
final double tprime2 = 1.0 - t2;
855+
final double extrema2X = (tprime2 * tprime2 * x1) +
856856
(2 * t2 * tprime2 * cpX) +
857857
(t2 * t2 * x2);
858-
final num extrema2Y = (tprime2 * tprime2 * y1) +
858+
final double extrema2Y = (tprime2 * tprime2 * y1) +
859859
(2 * t2 * tprime2 * cpY) +
860860
(t2 * t2 * y2);
861861
// Expand bounds.
862-
minX = math.min(minX, extrema2X as double);
862+
minX = math.min(minX, extrema2X);
863863
maxX = math.max(maxX, extrema2X);
864-
minY = math.min(minY, extrema2Y as double);
864+
minY = math.min(minY, extrema2Y);
865865
maxY = math.max(maxY, extrema2Y);
866866
}
867867
}
@@ -904,31 +904,31 @@ class SurfacePath implements ui.Path {
904904
// Now find roots for quadratic equation with known coefficients
905905
// a,b,c
906906
// The roots are (-b+-sqrt(b*b-4*a*c)) / 2a
907-
num s = (b * b) - (4 * a * c);
907+
double s = (b * b) - (4 * a * c);
908908
// If s is negative, we have no real roots
909909
if ((s >= 0.0) && (a.abs() > epsilon)) {
910910
if (s == 0.0) {
911911
// we have only 1 root
912-
final num t = -b / (2 * a);
913-
final num tprime = 1.0 - t;
912+
final double t = -b / (2 * a);
913+
final double tprime = 1.0 - t;
914914
if ((t >= 0.0) && (t <= 1.0)) {
915915
extremaX = ((tprime * tprime * tprime) * startX) +
916916
((3 * tprime * tprime * t) * cpX1) +
917917
((3 * tprime * t * t) * cpX2) +
918-
(t * t * t * endX) as double;
918+
(t * t * t * endX);
919919
minX = math.min(extremaX, minX);
920920
maxX = math.max(extremaX, maxX);
921921
}
922922
} else {
923923
// we have 2 roots
924924
s = math.sqrt(s);
925-
num t = (-b - s) / (2 * a);
926-
num tprime = 1.0 - t;
925+
double t = (-b - s) / (2 * a);
926+
double tprime = 1.0 - t;
927927
if ((t >= 0.0) && (t <= 1.0)) {
928928
extremaX = ((tprime * tprime * tprime) * startX) +
929929
((3 * tprime * tprime * t) * cpX1) +
930930
((3 * tprime * t * t) * cpX2) +
931-
(t * t * t * endX) as double;
931+
(t * t * t * endX);
932932
minX = math.min(extremaX, minX);
933933
maxX = math.max(extremaX, maxX);
934934
}
@@ -962,13 +962,13 @@ class SurfacePath implements ui.Path {
962962
// Now find roots for quadratic equation with known coefficients
963963
// a,b,c
964964
// The roots are (-b+-sqrt(b*b-4*a*c)) / 2a
965-
num s = (b * b) - (4 * a * c);
965+
double s = (b * b) - (4 * a * c);
966966
// If s is negative, we have no real roots
967967
if ((s >= 0.0) && (a.abs() > epsilon)) {
968968
if (s == 0.0) {
969969
// we have only 1 root
970-
final num t = -b / (2 * a);
971-
final num tprime = 1.0 - t;
970+
final double t = -b / (2 * a);
971+
final double tprime = 1.0 - t;
972972
if ((t >= 0.0) && (t <= 1.0)) {
973973
extremaY = ((tprime * tprime * tprime) * startY) +
974974
((3 * tprime * tprime * t) * cpY1) +
@@ -980,8 +980,8 @@ class SurfacePath implements ui.Path {
980980
} else {
981981
// we have 2 roots
982982
s = math.sqrt(s);
983-
final num t = (-b - s) / (2 * a);
984-
final num tprime = 1.0 - t;
983+
final double t = (-b - s) / (2 * a);
984+
final double tprime = 1.0 - t;
985985
if ((t >= 0.0) && (t <= 1.0)) {
986986
extremaY = ((tprime * tprime * tprime) * startY) +
987987
((3 * tprime * tprime * t) * cpY1) +
@@ -991,8 +991,8 @@ class SurfacePath implements ui.Path {
991991
maxY = math.max(extremaY, maxY);
992992
}
993993
// check 2nd root
994-
final num t2 = (-b + s) / (2 * a);
995-
final num tprime2 = 1.0 - t2;
994+
final double t2 = (-b + s) / (2 * a);
995+
final double tprime2 = 1.0 - t2;
996996
if ((t2 >= 0.0) && (t2 <= 1.0)) {
997997
extremaY = ((tprime2 * tprime2 * tprime2) * startY) +
998998
((3 * tprime2 * tprime2 * t2) * cpY1) +

0 commit comments

Comments
 (0)