@@ -829,39 +829,39 @@ class SurfacePath implements ui.Path {
829829
830830 double denom = x1 - (2 * cpX) + x2;
831831 if (denom.abs () > epsilon) {
832- final num t1 = (x1 - cpX) / denom;
832+ final double t1 = (x1 - cpX) / denom;
833833 if ((t1 >= 0 ) && (t1 <= 1.0 )) {
834834 // Solve (x,y) for curve at t = tx to find extrema
835- final num tprime = 1.0 - t1;
836- final num extremaX = (tprime * tprime * x1) +
835+ final double tprime = 1.0 - t1;
836+ final double extremaX = (tprime * tprime * x1) +
837837 (2 * t1 * tprime * cpX) +
838838 (t1 * t1 * x2);
839- final num extremaY = (tprime * tprime * y1) +
839+ final double extremaY = (tprime * tprime * y1) +
840840 (2 * t1 * tprime * cpY) +
841841 (t1 * t1 * y2);
842842 // Expand bounds.
843- minX = math.min (minX, extremaX as double );
843+ minX = math.min (minX, extremaX);
844844 maxX = math.max (maxX, extremaX);
845- minY = math.min (minY, extremaY as double );
845+ minY = math.min (minY, extremaY);
846846 maxY = math.max (maxY, extremaY);
847847 }
848848 }
849849 // Now calculate dy/dt = 0
850850 denom = y1 - (2 * cpY) + y2;
851851 if (denom.abs () > epsilon) {
852- final num t2 = (y1 - cpY) / denom;
852+ final double t2 = (y1 - cpY) / denom;
853853 if ((t2 >= 0 ) && (t2 <= 1.0 )) {
854- final num tprime2 = 1.0 - t2;
855- final num extrema2X = (tprime2 * tprime2 * x1) +
854+ final double tprime2 = 1.0 - t2;
855+ final double extrema2X = (tprime2 * tprime2 * x1) +
856856 (2 * t2 * tprime2 * cpX) +
857857 (t2 * t2 * x2);
858- final num extrema2Y = (tprime2 * tprime2 * y1) +
858+ final double extrema2Y = (tprime2 * tprime2 * y1) +
859859 (2 * t2 * tprime2 * cpY) +
860860 (t2 * t2 * y2);
861861 // Expand bounds.
862- minX = math.min (minX, extrema2X as double );
862+ minX = math.min (minX, extrema2X);
863863 maxX = math.max (maxX, extrema2X);
864- minY = math.min (minY, extrema2Y as double );
864+ minY = math.min (minY, extrema2Y);
865865 maxY = math.max (maxY, extrema2Y);
866866 }
867867 }
@@ -904,31 +904,31 @@ class SurfacePath implements ui.Path {
904904 // Now find roots for quadratic equation with known coefficients
905905 // a,b,c
906906 // The roots are (-b+-sqrt(b*b-4*a*c)) / 2a
907- num s = (b * b) - (4 * a * c);
907+ double s = (b * b) - (4 * a * c);
908908 // If s is negative, we have no real roots
909909 if ((s >= 0.0 ) && (a.abs () > epsilon)) {
910910 if (s == 0.0 ) {
911911 // we have only 1 root
912- final num t = - b / (2 * a);
913- final num tprime = 1.0 - t;
912+ final double t = - b / (2 * a);
913+ final double tprime = 1.0 - t;
914914 if ((t >= 0.0 ) && (t <= 1.0 )) {
915915 extremaX = ((tprime * tprime * tprime) * startX) +
916916 ((3 * tprime * tprime * t) * cpX1) +
917917 ((3 * tprime * t * t) * cpX2) +
918- (t * t * t * endX) as double ;
918+ (t * t * t * endX);
919919 minX = math.min (extremaX, minX);
920920 maxX = math.max (extremaX, maxX);
921921 }
922922 } else {
923923 // we have 2 roots
924924 s = math.sqrt (s);
925- num t = (- b - s) / (2 * a);
926- num tprime = 1.0 - t;
925+ double t = (- b - s) / (2 * a);
926+ double tprime = 1.0 - t;
927927 if ((t >= 0.0 ) && (t <= 1.0 )) {
928928 extremaX = ((tprime * tprime * tprime) * startX) +
929929 ((3 * tprime * tprime * t) * cpX1) +
930930 ((3 * tprime * t * t) * cpX2) +
931- (t * t * t * endX) as double ;
931+ (t * t * t * endX);
932932 minX = math.min (extremaX, minX);
933933 maxX = math.max (extremaX, maxX);
934934 }
@@ -962,13 +962,13 @@ class SurfacePath implements ui.Path {
962962 // Now find roots for quadratic equation with known coefficients
963963 // a,b,c
964964 // The roots are (-b+-sqrt(b*b-4*a*c)) / 2a
965- num s = (b * b) - (4 * a * c);
965+ double s = (b * b) - (4 * a * c);
966966 // If s is negative, we have no real roots
967967 if ((s >= 0.0 ) && (a.abs () > epsilon)) {
968968 if (s == 0.0 ) {
969969 // we have only 1 root
970- final num t = - b / (2 * a);
971- final num tprime = 1.0 - t;
970+ final double t = - b / (2 * a);
971+ final double tprime = 1.0 - t;
972972 if ((t >= 0.0 ) && (t <= 1.0 )) {
973973 extremaY = ((tprime * tprime * tprime) * startY) +
974974 ((3 * tprime * tprime * t) * cpY1) +
@@ -980,8 +980,8 @@ class SurfacePath implements ui.Path {
980980 } else {
981981 // we have 2 roots
982982 s = math.sqrt (s);
983- final num t = (- b - s) / (2 * a);
984- final num tprime = 1.0 - t;
983+ final double t = (- b - s) / (2 * a);
984+ final double tprime = 1.0 - t;
985985 if ((t >= 0.0 ) && (t <= 1.0 )) {
986986 extremaY = ((tprime * tprime * tprime) * startY) +
987987 ((3 * tprime * tprime * t) * cpY1) +
@@ -991,8 +991,8 @@ class SurfacePath implements ui.Path {
991991 maxY = math.max (extremaY, maxY);
992992 }
993993 // check 2nd root
994- final num t2 = (- b + s) / (2 * a);
995- final num tprime2 = 1.0 - t2;
994+ final double t2 = (- b + s) / (2 * a);
995+ final double tprime2 = 1.0 - t2;
996996 if ((t2 >= 0.0 ) && (t2 <= 1.0 )) {
997997 extremaY = ((tprime2 * tprime2 * tprime2) * startY) +
998998 ((3 * tprime2 * tprime2 * t2) * cpY1) +
0 commit comments