@@ -136,10 +136,16 @@ def create_prediction_request(transformed_sample):
136
136
shape = []
137
137
for dim in signature_def [signature_key ]["tensorShape" ]["dim" ]:
138
138
shape .append (int (dim ["size" ]))
139
- tensor_proto = tf .make_tensor_proto (
140
- np .array (value ).reshape (shape ), dtype = data_type , shape = shape
141
- )
142
- prediction_request .inputs [column_name ].CopyFrom (tensor_proto )
139
+
140
+ try :
141
+ tensor_proto = tf .make_tensor_proto (
142
+ np .array (value ).reshape (shape ), dtype = data_type , shape = shape
143
+ )
144
+ prediction_request .inputs [column_name ].CopyFrom (tensor_proto )
145
+ except Exception as e :
146
+ raise UserException (
147
+ 'key "{}"' .format (column_name ), "expected shape {}" .format (shape )
148
+ ) from e
143
149
144
150
return prediction_request
145
151
@@ -163,8 +169,16 @@ def create_raw_prediction_request(sample):
163
169
shape = [1 ]
164
170
value = [value ]
165
171
sig_type = signature_def [signature_key ]["inputs" ][column_name ]["dtype" ]
166
- tensor_proto = tf .make_tensor_proto (value , dtype = DTYPE_TO_TF_TYPE [sig_type ], shape = shape )
167
- prediction_request .inputs [column_name ].CopyFrom (tensor_proto )
172
+
173
+ try :
174
+ tensor_proto = tf .make_tensor_proto (
175
+ value , dtype = DTYPE_TO_TF_TYPE [sig_type ], shape = shape
176
+ )
177
+ prediction_request .inputs [column_name ].CopyFrom (tensor_proto )
178
+ except Exception as e :
179
+ raise UserException (
180
+ 'key "{}"' .format (column_name ), "expected shape {}" .format (shape )
181
+ ) from e
168
182
169
183
return prediction_request
170
184
0 commit comments