
OpenCMIS Server Development Guide

Building custom CMIS servers with the
Apache Chemistry OpenCMIS Server Framework

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Version History:
Version 1.0 November 6, 2013

Notes: First edition of Guide.

Version 1.1 March 25, 2014
Notes: Added sections explaining new 2014 server extensions and new

subproject with a reference extension. FileBridge is updated to support extensions.

NOTE: You have downloaded an old version of this guide. There is a
second edition of this guide available as of October 28, 2014.

Please download the second edition from here:
https://github.com/cmisdocs/ServerDevelopmentGuideV2
in the ./docs subdirectory.

Authors:
Jay Brown, ECM Architect, IBM
Florian Müller, ECM Architect, SAP

http://creativecommons.org/licenses/by/3.0/deed.en_US
https://github.com/cmisdocs/ServerDevelopmentGuideV2

OpenCMIS Server Development Guide

Table of Contents
Introduction ... 3

Overview for Parts 1 and 2..3
Acknowledgements... 4

Prerequisites..4
Goals of the tutorial.. 4

Tutorial task description ..4
Initial setup of your developer environment ... 5

Getting and building the latest OpenCMIS libraries... 5
Initial build of OpenCMIS... 5

Building OpenCMIS ...7
Getting the project source from GitHub ...9
Building the solution from the command line...10

Building and running from Eclipse.. 12
Importing the project into Eclipse... 12
Setting up a Tomcat server target in Eclipse .. 15

A note about running from Windows..16
Running and debugging from Eclipse... 17

A note about startup timeouts... 17
Connecting CMIS Workbench to our local server...19

Starting Chemistry Workbench...20
Creating a new server project from scratch..22
A cooks tour of the cmisFileBridge project .. 23

OpenCMIS Server Framework Interfaces...23
CmisService..24
CmisServiceFactory..25

OpenCMIS Server Framework Operation...25
FileBridgeCmisServiceFactory...26
FileBridgeCmisService...27
FileBridgeRepositoryManager... 27
FileBridgeRepository..27
ContentRangeInputStream..27
FileBridgeUserManager... 28
FileBridgeUtils... 28
FileBridgeTypeManager... 28

Tutorial exercises... 28
Exercise 1: Filling out the RepositoryInfo structures..29

Exercise 1.1 Setting the CMIS supported version.. 30
Exercise 1.2 Setting product, version and vendor.. 30
Exercise 1.3 Setting the root folder ID... 30

Exercise 2: Computing CMIS IDs for your objects.. 31
Spot the design problem... 31

2

OpenCMIS Server Development Guide

Exercise 2.1 Handle null and root when computing IDs.. 32
Exercise 3: Returning an Object ...32

Exercise 3.1 Getting the File or Folder...32
Exercise 3.2 Identify all of the Properties ... 33
Exercise 3.3 Return the Properties..33
Exercise 3.4 Honoring the Property Filter..34

Exercise 4: getContentStream .. 34
Exercise 4.1 Offset and Range..35

Exercise 5: Adding logging and tracing to your server .. 35
Exercise 5.1 Adding slf4j to our project for logging.. 36
Exercise 5.2 Adding some logging code ..38
Exercise 5.3 Observe the logging output..38
Exercise 5.4 Overwriting the web.xml file to enable HTTP tracing..39
Examine the HTTP trace output... 41

Exercise 6: Testing your CMIS server ..42
Exercise 7: Supporting multiple repositories for your service.. 45

Miscellany for Developers... 47
IBM Content Navigator's CMIS client - minimum requirements... 47
Subversion clients for Windows..48
Auto start Chemistry Workbench connected to your server..49

Conclusion for Part I.. 49
Part 2 – The Server Extensions Framework...50

What are Server Extensions?...50
Supported versions of OpenCMIS..50
Engineering requirements...50
Design and Discussion..52

ServerSide Changes to enable extensions... 53
Changes to CmisService implementation (FileBridgeCmisService)..53
Changes to your ServiceFactory (FileBridgeCmisServiceFactory)...53
The WrapperManager... 53
Setting the MutableCallContext (optional)...54

Building a Server Extension..55
The AbstractCmisServiceWrapper... 55

Deploying the Extension .. 56
Registering Extensions... 56

Conclusion of Part 2.. 57
Resources... 57

Introduction

Overview for Parts 1 and 2

In part one of this tutorial you will be introduced to the Apache Chemistry project, its architecture,
tools and APIs but from a perspective of a developer that needs to build a custom server. We will be

3

OpenCMIS Server Development Guide

focusing specifically on building our server using Java and even more specifically using the Apache
Chemistry OpenCMIS Server Framework.

In part two, you will learn about the new 2014 runtime CMIS server extensions. Both how to support
them from your server and how to build and runtime deploy the extensions themselves.

Acknowledgements

We would like to thank IBM and SAP for supporting the creation of this guide and the corresponding
source code.

Prerequisites

• Experience with Java development using Eclipse and Maven.
• It is assumed the reader has a good familiarity with the CMIS specification and its purpose.

◦ For a quick tour, the Apache Chemistry site has a “What is CMIS?” page with lots of useful
links to get you acquainted here: http://chemistry.apache.org/project/cmis.html.

◦ Also the first chapter of “CMIS and Apache Chemistry in Action” is a very good
introduction and is available as a free pdf download at Manning's site here:
http://www.manning.com/mueller/

◦ Finally it is always a good idea to keep a copy of the CMIS specification handy. (see
resources section at end of document for links)

• A familiarity with Apache Chemistry CMIS Workbench is helpful but not mandatory. Refer to
the 10 minute video introducing this tool if you are not already familiar with it here:
http://www.youtube.com/watch?v=akvCDVh03qs . Note that this video refers to a much older
version of Chemistry Workbench than is available today but the general concepts have not
changed.

Goals of the tutorial

• Understand how to use the OpenCMIS server framework to build CMIS 1.0+1.1 compliant
servers.

• Understand the scope of server side Apache Chemistry OpenCMIS and be able to build its
dependencies locally.

• Understand the CMIS Workbench tool and become familiar with it by using it throughout this
tutorial.

• Understand how enterprise CMIS clients can have varying requirements for the servers they
connect to.

Tutorial task description
In this tutorial we will be using OpenCMIS APIs to build a CMIS 1.1 server on top of a local
filesystem using the latest version of the Apache Chemistry OpenCMIS Server Framework. We will
show all of the aspects of this development from the initial setup of a blank server template using a
Maven archetype, through development, deployment and testing of the finished product. The purpose
of this exercise is to demonstrate the server framework on top of a simple and universally understood

4

http://www.youtube.com/watch?v=akvCDVh03qs
http://www.manning.com/mueller/
http://chemistry.apache.org/project/cmis.html

OpenCMIS Server Development Guide

backend (a typical filesystem). Once you understand the steps in this document you should be able to
extrapolate this knowledge into what will be required to build a CMIS server on top of whatever server
or legacy application that you wish to expose to the world of CMIS clients.

Initial setup of your developer environment
The tutorial assumes you have the following installed:

 Eclipse EE edition “Kepler” (v 4.3.0) or later
◦ This is the Java IDE that we will be using for editing / compiling and running our project.

 Apache Maven 3.0.5 or later
◦ The command line version of Maven for building our project outside of the Eclipse IDE.

 Svn client, version 1.6.19 or later
◦ A subversion client is needed in order to retrieve the project from our source repository. If

you don't want to use SVN you can also go directly to the source location and download a
zipped bundle of the source code.

 Java JDK version 1.7.0_25 or later
◦ Any current JDK should work. Has also been tested with IBM's JDK 6 and above.

 Apache Tomcat v 7.x
◦ The servlet container for hosting our server. Tomcat is not required but deploying this server

to other JEE containers like WebSphere, JBoss and WebLogic is outside the scope of this
tutorial.

All of the these tools we have chosen for this tutorial can be freely obtained and can be installed on
Windows, OSX or Linux equally well.

Getting and building the latest OpenCMIS libraries

Although all you need to perform these exercises is the latest version of the OpenCMIS libraries we are
going to start off by downloading the source and compiling all of the libraries ourselves. This includes
the Apache Chemistry Workbench CMIS client application that we will be using for testing our server.
Once you see how easy this is (just a couple of commands) you will be a lot more comfortable doing
this if you ever end up in a situation where you need a fix or a feature that is only in the latest snapshot.
So lets get started!

Initial build of OpenCMIS
Our first step will be to download the latest version of the source code from the Apache Chemistry
SVN repository. Create a directory where you would like the Apache Chemistry source tree to be
located. This is not going to be the location of our project, but the build location of the libraries that our
project will be using. It can be under the same project directory if you wish but this may be used by
other projects later so a shared location may be preferable. When completed it will take about 250 MB
of space after your first build is completed.

5

OpenCMIS Server Development Guide

From a command prompt, cd into your new directory and enter:

svn checkout http://svn.apache.org/repos/asf/chemistry/opencmis/trunk

then press enter to start the checkout operation. This may take a few minutes depending on your
connection speed.

6

http://svn.apache.org/repos/asf/chemistry/opencmis/trunk

OpenCMIS Server Development Guide

Building OpenCMIS

To build the entire tree we need to change directories to the top of the source tree where the top level
Maven pom.xml file is located. CD into the ./trunk directory if you are not already there.

Since the build is pretty large, let's increase the max Java heap size for Maven here:

export MAVEN_OPTS='-Xmx1024m -XX:MaxPermSize=512m'

Windows Note: use 'set' in place of 'export' for (and omit the quotes) throughout this document.
Then we will run the build skipping the tests like this:
mvn clean install -Dmaven.test.skip=true

If you have out of memory errors, etc., try running a second time without the clean like this:
mvn install -Dmaven.test.skip=true
This is also a much faster way to build if you are just refreshing after a few small changes.

Also note that adding
mvn clean install -Dmaven.test.skip=true
-Dorg.apache.chemistry.opencmis.tck.test=false

will turn off the TCK tests during the build and reduce total build time and memory needed even
further.

Output from a successful run will look something like this.

… <lots of build output stuff>
[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] Apache Chemistry OpenCMIS SUCCESS [6.509s]
[INFO] OpenCMIS Commons API SUCCESS [7.682s]
[INFO] OpenCMIS Commons Implementation SUCCESS [28.164s]
[INFO] OpenCMIS Client API SUCCESS [0.933s]
[INFO] OpenCMIS Client Bindings Implementation SUCCESS [9.337s]
[INFO] OpenCMIS Client Implementation SUCCESS [4.917s]
[INFO] OpenCMIS Server Support SUCCESS [19.647s]
[INFO] OpenCMIS Server Implementation SUCCESS [5.766s]
[INFO] OpenCMIS Server Implementation WAR packaging SUCCESS [3.026s]
[INFO] OpenCMIS Test Utilities SUCCESS [1.323s]
[INFO] OpenCMIS InMemory Server WAR packaging SUCCESS [6.233s]
[INFO] OpenCMIS FileShare Server Implementation SUCCESS [2.180s]
[INFO] OpenCMIS JCR Server Implementation SUCCESS [4.261s]
[INFO] OpenCMIS Server Archetype SUCCESS [2.366s]
[INFO] OpenCMIS Bridge WAR packaging SUCCESS [1.783s]
[INFO] OpenCMIS Test Compatibility Kit SUCCESS [2.897s]
[INFO] OpenCMIS Full Integration Tests SUCCESS [27.091s]
[INFO] OpenCMIS Tools SUCCESS [2.245s]
[INFO] OpenCMIS Browser SUCCESS [0.320s]
[INFO] OpenCMIS Browser Application SUCCESS [0.267s]

7

OpenCMIS Server Development Guide

[INFO] OpenCMIS Workbench SUCCESS [30.709s]
[INFO] OpenCMIS OSGi Client Wrapper SUCCESS [4.938s]
[INFO] OpenCMIS OSGi Server Wrapper SUCCESS [2.569s]
[INFO] OpenCMIS Android Client SUCCESS [10.049s]
[INFO] OpenCMIS Assemblies Distribution SUCCESS [0.239s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 3:09.301s
[INFO] Finished at: Wed Aug 28 15:33:03 EDT 2013
[INFO] Final Memory: 134M/347M
[INFO] --
2013-08-28 15:33:04.245:INFO::Shutdown hook executing
2013-08-28 15:33:04.245:INFO::Shutdown hook complete

8

OpenCMIS Server Development Guide

Getting the project source from GitHub

All of the source code for this project is publicly available on GitHub and is Apache 2 licensed so that
you can feel free to copy it, reuse it, sell it or whatever you want. Just remember this code is not
supported for production use. (legal disclaimer)

Create a directory to contain the source code tree for the project. For consistency throughout the
tutorial let's hypothetically use:

/root/Desktop/dev.tools/project.code

In a terminal window cd to your new project directory and execute the following command to checkout
the project source tree.

svn checkout https://github.com/cmisdocs/ServerDevelopmentGuide

After this completes, take a moment to examine the structure of the project before we move on to
building it for the first time.

The illustration below shows the directory once it has been extracted or checked out.

The contents are as follows:
• cmisFileBridge-master: Contains the actual working version of the cmisFileBridge sample

CMIS server application from the guide.
• doc: Contains the various renderings of this document (pdf, etc)
• src.lab: Contains a zipped lab version of cmisFileBridge. This version will not compile until the

lab exercises are completed by the student. Use of this version of the project is optional.

9

OpenCMIS Server Development Guide

Building the solution from the command line

Throughout this project we will be using Eclipse to edit, compile, debug and run our project; but before
we get to Eclipse it is always good to know how to build the project from the command line. Perhaps
you prefer Vi, Emacs, Netbeans or even Notepad. (no judging here) In all these cases we would change
to the directory that contains your pom.xml file. In the case of our hypothetical tutorial directory we
chose earlier that will be the

/root/Desktop/dev.tools/project.code/cmisFileBridge-master

directory and execute the following command:
(Note this must be executed from the same location as the project pom.xml file)
mvn clean install -Dmaven.test.skip=true

(does that command look familiar?)

After a few seconds, you should see something like this at the tail end of a lot of output.

[INFO] Webapp assembled in [764 msecs]
[INFO] Building war:
/root/Desktop/dev.tools/project.code/cmisFileBridge/trunk/target/server-1.0-SNAPSHOT.war
[INFO]
[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ server ---
[INFO] Installing /root/Desktop/dev.tools/project.code/cmisFileBridge/trunk/target/server-
1.0-SNAPSHOT.war to /root/.m2/repository/org/example/cmis/server/1.0-SNAPSHOT/server-1.0-
SNAPSHOT.war
[INFO] Installing /root/Desktop/dev.tools/project.code/cmisFileBridge/trunk/pom.xml to
/root/.m2/repository/org/example/cmis/server/1.0-SNAPSHOT/server-1.0-SNAPSHOT.pom
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 15.560s
[INFO] Finished at: Wed Aug 28 18:02:01 EDT 2013
[INFO] Final Memory: 16M/55M
[INFO] --

If you want to deploy this WAR file manually to your own Tomcat (or other container) have a look at
the target directory under trunk (shown in illustration below) and you will see the xxx-
SNAPSHOT.war file. (shown highlighted)

10

OpenCMIS Server Development Guide

Going forward we will be letting eclipse handle all of our deployments but again its nice to know how
to do this manually.

11

OpenCMIS Server Development Guide

Building and running from Eclipse
Please start your copy of Eclipse for the next part. From here out we will be using absolute paths for
locations of files so just compute the difference for your local env based on our initial hypothetical root
path.

Importing the project into Eclipse

From the file menu select 'import' and you will see the dialog in the illustration below:

12

OpenCMIS Server Development Guide

Open up the 'Maven' submenu and select 'Existing Maven Projects' then click 'Next'.
On the next dialog select the 'browse' button to the right of the 'root directory' field then navigate to
your trunk directory where the project pom.xml file it located. For the our tutorial environment the
location is

/root/Desktop/dev.tools/project.code/cmisFileBridge-master

After selecting the directory, Eclipse will do a bit of processing (reading the pom.xml file) and then
display an entry for your project (pre checked) as shown in the illustration below:

Select 'Finish' to finish the import and go back to your workspace to see the newly imported CMIS
server project. The following illustration shows the new project explorer view of the project showing
the files in the org.example.cmis.server package.

13

OpenCMIS Server Development Guide

Now that we have the project successfully imported we will setup an embedded Tomcat instance so that
Eclipse will have a container target for deployments.

14

OpenCMIS Server Development Guide

Setting up a Tomcat server target in Eclipse

Download Apache Tomcat 7 from any of the standard mirrors. (e.g. http://tomcat.apache.org/download-
70.cgi) and extract the archive to a working location where you want to keep tools for your project. On
our hypothetical tutorial image we place the .tar.gz file in the

/root/Desktop/dev.tools/to.install

directory.

Extract this file in place which will create a new

/root/Desktop/dev.tools/to.install/apache-tomcat-7.0.42

directory. Make a note of wherever you place this directory since you will need it in the next step.

Next start your Eclipse again and look at the bottom of your Eclipse workspace at the lower most row
of tabs. There you will find a 'Server' tab. Select it and then click on the blue link to create a new
server.

Illustration 1: Server tab showing no servers currently configured

Then you will be prompted with the 'Define a new server' dialog. Open up the Apache dropdown and
select 'Tomcat v7.0 server' then select the 'Next' button at the bottom.
In the 'Tomcat Installation Directory' field enter in the path where your Apache Tomcat is located (for
the tutorial we are using /root/Desktop/dev.tools/to.install/apache-tomcat-
7.0.42) then click 'Next'.
On this last dialog (Illustration below) you will select your server app on the left and press the 'Add'
button which will move it over into the 'Configured' side like shown in the illustration below:

15

http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi

OpenCMIS Server Development Guide

llustration 2: New server dialog showing our server app configured

Press 'Finish' to complete the configuration.

A note about running from Windows

If you are running from Windows you will need to change the repository.properties file (we
will talk more about this file later).
Edit the file (see illustration below for location) and change the line
repository.test = /
to point to a more Windows friendly path like
repository.test = c:\\myrootdirectory
and make sure whatever directory you indicate actually exists and has some files and directories
already populated.

The relative location of this properties file is shown in the illustration below:

16

OpenCMIS Server Development Guide

Running and debugging from Eclipse

Now all that is left is to tell Eclipse to run our project. Select your new Tomcat server instance in the
Servers tab and press the green 'start' button as shown in the illustration below:

You will know when the server has started when you see an info message in your 'Console' tab showing
successful startup like this:
INFO: Server startup in 14322 ms

A note about startup timeouts

If you are running on a slower machine it is possible that the server will not start up within the default
timeout window that is defined by Eclipse. If you notice that your server is timing out you can increase
the timeout value by double clicking on the server entry in your 'Servers' view. This will open up the
Tomcat server properties page (shown in illustration below). On that page you will find a 'Timeouts'
section where you can increase the value (from 45 seconds) to whatever is appropriate for your
machine (perhaps 90 seconds).

17

Illustration 3: Server tab with application ready to run

OpenCMIS Server Development Guide

At this point lets bring up firefox to see our new servers landing page and make sure it really did
startup. Go to http://localhost:8080/server/ and you should see a page like the following illustration.

18

http://localhost:8080/server/

OpenCMIS Server Development Guide

Illustration 4: Firefox showing the landing page for the FileBridge
CMIS server

Now we are ready to connect Workbench and poke around to see what this little bit of code can really
do.

Connecting CMIS Workbench to our local server

Ordinarily to run CMIS Workbench you would just download the latest binary from the download page
but since we have just did a local build of the entire OpenCMIS tree lets go ahead and use the one that
we have just built instead.

19

OpenCMIS Server Development Guide

Go back to your chemistry.trunk directory and navigate down into
/trunk/chemistry-opencmis-workbench/chemistry-opencmis-
workbench/target

Here you will grab the file that ends with -SNAPSHOT-full.zip as shown in the illustration below:

Copy the zip file up to a shared dev.tools directory (in our tutorial we will use desktop/dev.tools) There
create a new sub-directory named Workbench. Once there uncompress the file.

Starting Chemistry Workbench

Running the workbench is now just a matter of running workbench.sh (if on Linux or Mac) or
workbench.bat (if Windows). After running this command you will see the following dialog
(illustration below) asking you for connection information to your server.

20

llustration 5: Workbench target files after OpenCMIS build

OpenCMIS Server Development Guide

Since our server is still running all we need to do is enter in the connection info and we will be off and
running.

Select the 'Expert' tab and paste in the following info:

org.apache.chemistry.opencmis.binding.spi.type=browser
org.apache.chemistry.opencmis.binding.browser.url=http://localhost:8080/server/browser
org.apache.chemistry.opencmis.user=test
org.apache.chemistry.opencmis.password=test
org.apache.chemistry.opencmis.binding.compression=true
org.apache.chemistry.opencmis.binding.cookies=true

Note: You don't have to use the expert tab. You can also separately enter in the URL, user and
password values then click on the 'Browser' radio button. Same result. Its just less steps to use the
expert page. (e.g. a single paste)

Select the 'load repositories' button then click on 'login' and you should almost immediately see the root
directory displayed like the illustration below:

21

OpenCMIS Server Development Guide

llustration 6: First screen you see in Workbench after login and selecting a
repository

Creating a new server project from scratch
Now that you have seen how to build and run the solution lets get down to how to build a project like
this from scratch. The text below shows the command line options to pass to Maven (mvn) to generate
our server archetype. This is the command that we used to generate FileBridge. If you want to see this
in action create a temp directory and give it a shot now.

mvn archetype:generate \
-DgroupId=org.example.cmis \
-DartifactId=server \
-Dversion=1.0-SNAPSHOT \
-Dpackage=org.example.cmis.server \
-DprojectPrefix=FileBridge \
-DarchetypeGroupId=org.apache.chemistry.opencmis \
-DarchetypeArtifactId=chemistry-opencmis-server-archetype \
-DarchetypeVersion=1.0.0-SNAPSHOT \
-DinteractiveMode=false

Note: This archetype generation step can also be done GUI-style,with the latest version of Eclipse
(with Maven integration) We are leaving that out of the tutorial to save space but feel free to use that
instead (as an extra exercise) if you prefer.

Some highlights to note here concerning these values :

22

OpenCMIS Server Development Guide

 groupId, artifactId, and version: These are the Maven 'coordinates' for the code you are
generating. (see: http://maven.apache.org/pom.html#Maven_Coordinates for more info on
these)

 package: The Java package for the code.
 ProjectPrefix: Prefix for all the classes that will be generated. For example, the prefix

FileBridge generates the classes FileBridgeCmisService and
FileBridgeCmisServiceFactory.

 archetypeGroupId, archetypeArtifactId, and archetypeVersion: OpenCMIS archetype and
OpenCMIS version that should be used. The archetype OpenCMIS 1.0 may be available by the
time you read this. This version also defines the runtime OpenCMIS Server Framework version.

 InteractiveMode: If false, Maven won’t prompt you for confirmations during the generation
process.

A cooks tour of the cmisFileBridge project
Before we explain the different components and classes of the FileBridge, you have to understand first
how the OpenCMIS Server Framework works at a more generic level. The following material is a
condensed version of the material provided in the initial lecture we did on this subject at IBM's IOD
conference in 2013 prior to the lab (based on this tutorial). It is provided as a convenience for the folks
not taking the lab in person. For a more complete explanation of these issues please refer to chapter 14
in the 'CMIS and Apache Chemistry in Action' book (see References). As we move through and discuss
the different key classes and interfaces, take a moment to examine the corresponding code in your
solution project.

OpenCMIS Server Framework Interfaces

The OpenCMIS Server Framework is a web application that runs on top of a servlet engine such as
Tomcat, Jetty, or an application server like WebSphere (Shown in the illustration below). It handles all
CMIS requests and responses and does all the XML and JSON processing. It also hides the details of
CMIS bindings from the developer by turning incoming data into Java objects and outgoing data from
Java objects into XML or JSON.

23

http://maven.apache.org/pom.html#Maven_Coordinates

OpenCMIS Server Development Guide

To connect the server framework to the content repository, you have to implement two Java interfaces:
CmisService and CmisServiceFactory.

CmisService

The CmisService interface aggregates all CMIS 1.0 and CMIS 1.1 operations plus a few additional
methods. There are over 50 methods in total that can be implemented. The methods and method
parameters are named after the operations that are described in the “Services” section of the CMIS
specification. The implementation of the CmisService interface is supposed to behave as defined in
the specification. That includes throwing the exceptions documented there.
Implementing all these methods sounds tedious doesn't it? Luckily, OpenCMIS provides the abstract
class AbstractCmisService, which implements the CmisService interface and provides
convenience implementations for most methods. It reduces the number of required methods to just six.
Providing implementations for these six methods doesn’t make the CMIS connector specification
compliant, but it is sufficient for many CMIS clients (like the CMIS Workbench) to navigate through
the folder structure. It’s recommended to extend this class instead of implementing the interface
directly. You’ll see an example later when we discuss the FileBridgeCmisService class.

24

OpenCMIS Server Development Guide

CmisServiceFactory

The main task of an implementation of the CmisServiceFactory interface is to provide
CmisService objects. Whenever the server framework receives a request, it asks the
CmisServiceFactory for a CmisService object, which is then used to process the request.
There is only one CmisServiceFactory object per web application. This object also manages the
initialization and shut down of the CMIS connector and provides some configuration values for the
server framework. The CmisServiceFactory object must be thread-safe but the CmisService
objects it produces don’t need to be because they are only used for one request.
OpenCMIS provides the abstract class AbstractServiceFactory, which should be used to build
a service factory because it sets some sensible default values among other details. The
FileBridgeCmisServiceFactory class, which we will walk through later, also extends the
AbstractServiceFactory class.

Next, let’s see how the server framework uses these objects.

OpenCMIS Server Framework Operation

The server framework web application consists of five servlets and two context listeners (shown in
illustration below). It provides two CMIS 1.0 endpoints (for the AtomPub and the Web Services
binding) and three CMIS 1.1 endpoints (for the AtomPub, the Web Services, and the Browser binding).
Each endpoint can be disabled if necessary by editing the web.xml of the web application.
One of the context listeners sets up the CmisServiceFactory object and calls it’s init() method
when the web application starts up.

25

OpenCMIS Server Development Guide

Incoming CMIS requests are processed by the servlets. The requests are parsed, checked for
syntactically correctness, and the data is converted into Java objects. The framework then requests a
CmisService object from CmisServiceFactory and calls the suitable method with the received
data. The data returned by the method is converted into XML or JSON and sent back to the client.

Now you should have a rough understanding how the server framework works.
Next lets look into the FileBridge implementation – class by class.

FileBridgeCmisServiceFactory

As you might figure out from the name, the FileBridgeCmisServiceFactory is the service
factory class for the FileBridgeService. Its init() method gets the repository configuration and
sets up all necessary objects. The init method receives a map of configuration parameters. This map
represents the content of the repository.properties file, which resides in the classpath. The
repository.properties file is used by the server framework to identify the service factory class
and must at least contain an entry with the key “class” and the fully qualified classname of the service
factory as the value. The repository.properties file can also contain any other configuration.
In case of the FileBridge, we use it to configure the repositories, their root paths on disc, and the logins.
The readConfiguration method iterates through the map, collects all the repository and login details and
stores them in the repository manager (FileBridgeRepositoryManager) and the user manager
(FileBridgeUserManager).

It’s main task, though, is to serve FileBridgeCmisService objects. The framework calls the
getService method whenever it needs one. The framework provides a CallContext object, which
contains all kinds of details about the incoming call. That includes the user name and the password that
the client sent. Before the FileBridgeCmisServiceFactory returns a
FileBridgeCmisService object, it hands the CallContext object over to the user manager
(FileBridgeUserManager) to authenticate the user. If the authentication fails, it throws a
CmisPermissionDeniedException.

Now it’s time to serve a FileBridgeCmisService object. There are multiple ways to manage
those objects. The easiest, but most inefficient way would be to create a new object every time. Here,
we decided to use a ThreadLocal. Over time each thread will have it’s own object that is reused when a
subsequent request hits that thread.
FileBridgeCmisService objects are very lightweight and are only proxies for repository objects
(FileBridgeRepository), which we’ll discuss in a moment. For heavyweight CmisService objects or
CmisService objects that are expensive to create, a pool of objects might be a better option.

FileBridgeCmisServiceFactory does not return a FileBridgeCmisService object
directly, but FileBridgeCmisService objects that are wrapped by a CmisServiceWrapper
object. The CmisServiceWrapper is an optional class provided by OpenCMIS. The wrapper
checks a request for specification conformance before the request is forwarded to the wrapped service
object. If a client sends an invalid request, for example if it didn’t provide a mandatory parameter, the

26

OpenCMIS Server Development Guide

wrapper throws the appropriate exception without bothering the service object. The wrapper also sets
parameter values for parameters the client didn’t provide but the specification defines default values
for. Using this wrapper is recommended because it helps building more robust CMIS servers, however
it is not required.

Once the FileBridgeCmisService object has been created or retrieved, the CallContext
object is handed over to the object, and the service factory returns the object to the server framework.

FileBridgeCmisService

The FileBridgeCmisService class implements the CmisService interface and therefore has
to provide over 50 method implementations. By extending the AbstractCmisService class, we
can focus here on just the methods that we want to (and can) implement.
The FileBridgeCmisService only contains a tiny amount of logic since its task is merely to
forward the call to the appropriate repository instance.

FileBridgeRepositoryManager

The repository manager maps repository IDs to FileBridgeRepository object, which in turn
contains the repository logic. The repository manager is set up when the
FileBridgeCmisServiceFactory starts up and is used by the FileBridgeCmisService
to find the right FileBridgeRepository object.

FileBridgeRepository

The FileBridgeRepository class contains the main logic of our CMIS server. There is one
instance per repository at runtime. It has to be thread-safe because multiple threads could access the
same repository at the same time.
The FileBridgeRepository class maps CMIS operations to file system operations. Most of the
code is straightforward. Creating a document or folder maps to creating a file or directory on the file
system. The CMIS operations getObject and getContentStream provide metadata and content
respectively of a file (or folder). The getChildren and getDescendants operations return a list or tree of
children of a directory. And so on.
We skip the details here because the implementation of this class is the main topic of this tutorial's
exercises.

ContentRangeInputStream

The getContentStream operation allows a client to request an excerpt from a document content by
proving an offset and a length. This class is a simple wrapper around a Java InputStream that takes
the offset and length into account. The FileBridgeRepository uses it when getContentStream is
called and the client has requested a content excerpt.

27

OpenCMIS Server Development Guide

FileBridgeUserManager

The FileBridgeUserManager manages the logins and passwords. It is kept very simple and acts
a placeholder for a real user management system that you would be connecting to. In FileBridge, logins
are necessary to demonstrate the Allowable Actions and ACLs features. The
FileBridgeRepository distinguishes between read-only and read-write users, which affects the
Allowable Actions and ACLs.

FileBridgeUtils

This class provides a set of static helper methods. Most of them deal with extracting values from a set
of properties and are mainly used in FileBridgeRepository.

FileBridgeTypeManager

This class manages the CMIS type system. All repositories share the same type system in this
implementation and therefore there is just one instance of this class at runtime.
The type manager is as simple as it can be. It only manages the two base types for documents and
folders. It provides access methods to these type definitions that are similar to the CMIS operations.
This class makes use of the TypeDefinitionFactory, which is an OpenCMIS helper class that
provides methods to create and transform type and property definitions in a CMIS compliant way. It
should work for all servers with a straight forward type hierarchy and provides spec conforming base
type definitions. This is helpful to developers starting with CMIS setting up a spec compliant type
system quickly which can otherwise be somewhat tedious.
Note: In your own custom repository you may need to have a separate set of type definitions per
repository.

Tutorial exercises
For all of the exercises that follow, we have setup a special version of the fileBridge project. The only
differences between this code and the working solution at is small chunks of code that correspond to
the exercises below have been removed. You will find this 'lab' version of the project in a zip archive in
the /src.lab directory under the main project (a peer of the doc) directory.

If you prefer to stay with the one working project we have already setup and walk through the exercises
without actually writing the code, that is fine too. The most important part of these activities is actually
navigating around to these different places and seeing how the project all fits together.

If you want to work through these exercises with the lab version code then please setup a second
workspace following the directions outlined in 'Getting the project source from GitHub' but using the
contents of the zipped archive.

28

OpenCMIS Server Development Guide

Exercise 1: Filling out the RepositoryInfo structures

For our first exercise we will be doing something that should be one of the first things you will code up
when you create your own server. That is populating the RepositoryInfo structure and now that
we have CMIS 1.1 clients to accommodate (in addition to CMIS 1.0) there are a few finer points that
you will need to be aware of.
Navigate to the FileBridgeRepository class in your lab copy of the project (rather than the
solution). Then proceed down to the

private RepositoryInfo createRepositoryInfo(CmisVersion cmisVersion)

method.

Lets take a moment to look at the context of how this is first called. A breakpoint set at the top of this
method shows the following when we startup the server.

The red arrow in the illustration above shows the call to the createServiceFactory. There the init()
method is called, which after setting up its 3 manager classes, calls readConfiguration() passing it the
parameters that were read from the repository.properties file.
At the tail end of readConfiguration(), the constructor for FileBridgeRepository is called which calls
createRepositoryInfo two times. Once with Version.CMIS_1_0 passed in and once with
CmisVersion.CMIS_1_1. You may wonder why do we need two of these?
Recall during the cooks tour in the 'OpenCMIS Server Framework Operation' section, we talked about
how there are 5 servlets setup by the framework. These are divided into two groups, 2 of the endpoints
for CMIS 1.0 and 3 for 1.1 We are pre populating a unique repository info versioned for each of these
so if a CMIS 1.0 client comes in on either of the two 1.0 bindings they will get a CMIS 1.0 compliant
repository info structure. Likewise for a CMIS 1.1 client on any of the three CMIS 1.1 bindings.

29

OpenCMIS Server Development Guide

The structures are the same except for the code that is contained in the block starting with this test:

if (cmisVersion != CmisVersion.CMIS_1_0) {

Please have a look at that code now. You will see these are mostly settings having to do with the new
CMIS 1.1 type mutability features.
Armed with this we now should have a better idea what to do for the
 repositoryInfo.setCmisVersionSupported(...)
method. All we need to pass in here is the .value() of the cmisVersion object that was passed to us for
this method.

Exercise 1.1 Setting the CMIS supported version

Fill in the code that sets the CmisVersionSupported now. The line is marked with this <exercise
1.1>. Remember this must work for both 1.0 and 1.1 clients.

Exercise 1.2 Setting product, version and vendor

Fill in the code that sets the product name, product version and vendor name. The lines are marked with
<exercise 1.2>. These values can be anything you want since they are descriptive aspects of the
repository info.

Exercise 1.3 Setting the root folder ID

Fill in the code that sets the root folder ID. The line is marked with <exercise 1.3>. To a client this
value is an opaque string so you can make this any unique value (unique for this repository) that you
wish. In the case of the fileBridge we have created a static string:

private static final String ROOT_ID = "@root@";

Note that you are free to use whatever makes sense in your repository here. It may be a guid that the
underlying repository uses to identify the root folder, or it can be a special static value. It all depends on
your implementation.

Choosing an ID for your root object is a nice stepping off point to the bigger subject of choosing IDs
for all your objects which we will cover in the next exercise.

30

OpenCMIS Server Development Guide

Exercise 2: Computing CMIS IDs for your objects

Since CMIS IDs are completely opaque to all CMIS clients, often when you build a server you have
lots of choices concerning how you should map your internal objects to your external CMIS IDs. A
couple of points to remember :

 All IDs expressed to clients MUST be unique per repository.
 There must be a strict 1:1, bi-directional ** mapping between your external IDs and your internal

objects. Any ambiguity even for extreme edge cases is going to cause you pain later.
◦ ** So for example you could not use a one way hash value. (not bi directional and may have

collisions)
 The format of your IDs should be compatible with the CMIS transports XML, JSON and the

associated URLs so stay clear of special characters like < >/ \ $? * &% etc.

With these in mind how would you go about mapping all filesystem objects to a set of unique IDs? You
could use a file's iNode number as its ID. That would certainly be unique and URL friendly but it
would limit us to only Unix / Linux filesystems, so lets skip that one.
We could use the fully qualified path (from the root) of the object. That would be unique for sure, but
then we have the problem of all of those non URL friendly characters like spaces and '/'s not to mention
all of the non-Latin characters that could be in filenames. So what we have done in this sample is
base64 encode the path to get the ID and unencode to get the path. This produces IDs that are URL
friendly and guaranteed to be 1:1 and bi directional. E.g. /home/test → 'aG9tZS90ZXN0' and then back
again.

A note about Base 64 encoding / decoding: OpenCMIS comes with a handy Base64 class (package
org.apache.chemistry.opencmis.commons.impl) Take note of it! This class not only implements base64
in the most efficient manner possible but it also supports base64 encoded streams which you will have
to deal with here on the server side.

Spot the design problem

It turns out that there is an edge case where the model we have used for FileBridge for mapping ID's to
objects violates the specification. Can you guess where that is?
Hint: A CMIS object's ID must not change even if its name changes.

31

OpenCMIS Server Development Guide

Exercise 2.1 Handle null and root when computing IDs

In this example we are going to be spending all our time in one small method, that being

private String fileToId(File file)

in FileBridgeRepository. This is the one place that gets called when the repository need to obtain a
CMIS ID for a given file. Please go there now and have a look at the code in your lab version of the
project.
First we need to handle the case marked by <exercise 2.1>.
Here we must do something reasonable if we get passed a null file. In this case we will throw an
unchecked exception like:
throw new IllegalArgumentException("Hey now, that's just not right!");

The next case we need to handle here is the case of the root folder ID. Go to the code marked as
<exercise 2.2> and substitute in the constant that we talked about in exercise 1.3.

Exercise 3: Returning an Object

Almost all CMIS read operations return object data. The operations getObject and getObjectByPath,
for example, return the data of a single object. The same structure is used by list of objects operations
like getChildren, getObjectParents, getCheckedOutDocs, getObjectRelationships, and getAllVersions.
The operations getDescendants and getFolderTree return a tree of the same object data structure.
In this exercise we assemble such a data structure. The metadata of an object consists of the object
properties, Allowable Actions, ACLs, policies, relations, renditions, and so on. We are focusing on the
properties for this exercise.
Navigate to the FileBridgeRepository class and find the compileObjectData method. It returns an
ObjectData object, which the OpenCMIS server framework needs to compose a response for the client.
If you look through the code, you see that this method is used in many places.
The method compileObjectData calls the method compileProperties, which you will implement in
the following exercises.

Exercise 3.1 Getting the File or Folder

Find the first marker for <exercise 3.1> and navigate there. Before you return something useful later
in the method we need to sure that file or folder exists. If it doesn’t, we need to throw the right CMIS
exception.

Hint: Check the CMIS specification and the OpenCMIS JavaDoc (URL's for both in Resources section)
for exception definitions. Make those additions now.

Also to note:
If the file or folder exists, we need to identify if it is a file or folder. (nothing to change for this one just
be aware what is happening) We need to know this because both types have a slightly different set of
properties.

32

OpenCMIS Server Development Guide

Exercise 3.2 Identify all of the Properties

This exercise will be a research exercise. Consult the CMIS specification for all the document and
folder properties. There are quite a few standard properties that have to be returned. Also see the 'CMIS
Cheatsheet' in the Resources section for a complete condensed list of the version 1.0 properties.
The properties are of different data types. OpenCMIS provides an implementation class for each CMIS
data type named Property<type>Impl. Find them in the OpenCMIS JavaDoc (references
section).
For each property mentioned in the specification we must create a Property object with a suitable
value. Some values are just constants. For example, the file system doesn’t support versioning. So, the
versioning related properties could be hard coded. Other values can be derived from the Java File
object such as the name or last modification date.

Hints:
 The class PropertyIds has constants for the property IDs and indicates when which property

has been introduced. Make sure that you don’t return CMIS 1.1 properties to a CMIS 1.0 client.
 Documents and folders share a set of base properties but also have type specific properties. Make

sure that you take this into account.
 Make sure you treat the root folder correctly. The root folder is unique in that it has no parent

folder.
 OpenCMIS provides the helper class MimeTypes that guesses the MIME type of a file.
 You can decide how you want to handle empty files. You can return them as documents without

content (and no length and no MIME type) or as an empty document (with length 0 and a MIME
type).

Exercise 3.3 Return the Properties

The compileProperties method is supposed to return an object that implements the Properties
interface. OpenCMIS provides a simple implementation class called PropertiesImpl. Create an
instance of this class and add the Property objects that you have created in the previous exercise.
(<exercise 3.2.1>)

Now compute the ID for the object (<exercise 3.2.2>) and add it as a property using our
addProperty<type> method (<exercise 3.2.3>). Note that the addProperty<type>() methods are part
of FileBridge not OpenCMIS, more on that in the next part. Have a look at some of the other completed
property types for examples on how to handle the ID.

33

OpenCMIS Server Development Guide

Exercise 3.4 Honoring the Property Filter

This exercise will also be a research exercise.
As you already know, clients may provide a property filter when requesting objects.
If you were to look up the property filter description in the CMIS specification you would find they are
quite simple. They consist of a comma delimited list of property definition query names. (Go ahead and
have a look just to get more familiar with the spec layout)

Our code that added all of the properties used the constant values to identify each property we were
adding. (e.g. PropertyIds.BASE_TYPE_ID) So we must be able to convert between those
property IDs and the query names used in filters. To understand how this is done, have a look at one of
the addProperty<type>() methods to see how it calls checkAddProperty() to see if the property should
be added to the response. Next look at the checkAddProperty() method to see how this is implemented.
Pay special attention here to how the TypeManager is used to convert from the typeId to the Query
name so that it can be compared to the filter.

Exercise 4: getContentStream

Now that we have gotten this far things are going to start looking pretty simple. For this exercise we are
going to finish off the implementation of getContentStream; and in doing see some details on how to
handle Offset + Range even if your underlying repository does not support them. The illustration below
shows what the top of the stack will look like after a call to getContentStream (breakpoint set in
FileBridgeRepository.getContentStream())

34

OpenCMIS Server Development Guide

Exercise 4.1 Offset and Range

Jump over to the

public ContentStream getContentStream

method in the FileBridgeRepository class. Most of the work is done in this line

stream = new BufferedInputStream(new FileInputStream(file), 4 * 1024);

where we initialize a BufferedInputStream with the stream from our local file. What we want to
talk about here though is what to do with Offset and Range if they are present.

Look for the exercise token <exercise 4.1> and you will see the block of code we need to fix.
Here we have a non null value for offset or length. Jump over to the constructor for the
ContentRangeInputStream class to see how we have worked around the filesystem's inability to
do this directly. Once you have it understood fill in the three parameters for the constructor (stream,
offset, length)and we will be ready for the next exercise.

Exercise 5: Adding logging and tracing to your server

Logging is not in the scope of the OpenCMIS server framework so you may whatever technology or
library you prefer for this purpose. Note however that the framework uses SLF4J
(http://www.slf4j.org/) for logging internally. So if you want framework log messages in your log files,
you may configure SLF4J to use your same logging backend.
In this exercise we are going to show you how to do just that.

Unlike the solution project, the lab version of your project represents a generically generated project
from Maven. In order to add logging we are going to have to modify that project in the following ways:

◦ Modify the pom.xml to include whatever dependencies we need for our logging framework
of choice.

◦ Add a log4j.properties file.

In order to add tracing we will be adding a new src/main/webapp/WEB-INF/web.xml file to
define our http trace logging filter. Note that http tracing and logging are not related or dependent on
each other. You can use one or the other, both or neither. To emphasize this we are separating them into
different sections of this exercise.

35

http://www.slf4j.org/

OpenCMIS Server Development Guide

Exercise 5.1 Adding slf4j to our project for logging

In our sample FileBridge server we have decided to use slf4j as our abstraction logging layer for our
code and at deployment time we will be configuring log4j as our logging implementation. To make this
change in our project we will modify the project's pom.xml as follows: (right before the closing
</dependencies>)

<!-- enables OpenCMIS frame logging to log4j -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.5</version>
</dependency>

Next we are going to add in the required log4j.properties file.
Locate the log4j.properties file in your solution project's directory and copy it to the
corresponding location in your working directory.

/src/main/resources

Now lets do a maven update
(right click on the server project) / maven / update project

just to make sure everything is updated and refreshed.
At this point we will be ready to add some logging code in the next exercise.

For more information about how slf4j can dynamically plug in logging frameworks at deployment time
please consult the documentation at http://www.slf4j.org/.
After changing the pom don't forget to do a
 (right click on the server project) / maven / update project
to have Maven make all of the necessary changes to your Eclipse project. After selecting this option
you will see the dialog in the illustration below:

36

http://www.slf4j.org/

OpenCMIS Server Development Guide

Select 'OK' to continue. After Maven has finished processing you can check the libraries view of your
project (server / libraries / maven dependencies) and you will now see the project has the various log4j
and slf4j jars associated. (verify this now)

37

OpenCMIS Server Development Guide

Exercise 5.2 Adding some logging code

Now that all of the dependencies are setup we are going to add a log entry for every time the
framework calls the getRepositoryInfos() method on our service.

In FileBridgeCmisService please add the following imports:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Then at the top of the class anywhere between

public class FileBridgeCmisService extends AbstractCmisService {

and the first method definition we will add

 private static final Logger logger =
LoggerFactory.getLogger(FileBridgeCmisService.class);

then on the first line of getRepositoryInfos we will add the logger (info) line:

logger.info("entering call to FileBridgeCmisService.getReposotiryInfos");

That's all there it to it! We are ready to see it run.

Exercise 5.3 Observe the logging output

Run your server and login with Chemistry Workbench as usual. At this point you should see some
output in your Eclipse console window like this:

2013-09-13 19:15:55,728 INFO [http-bio-8080-exec-3]
org.example.cmis.server.FileBridgeCmisService: entering call to
FileBridgeCmisService.getReposotiryInfos

At this point if you wish to see how this all works in a normal Tomcat container you may want to build
from the command line to produce a war file in the /target directory.
Recall how we did this earlier in the lab by running

mvn clean install -Dmaven.test.skip=true

at the top of our project directory (where the pom.xml is located).
Rename the war file (to whatever you wish, e.g. filebridge.war) and deploy to Tomcat as usual.
After running again you should see your logging output in the catalina.out file.

Armed with the knowledge of how to add logging, we should be ready to start running some unit tests
in the next exercise.

38

OpenCMIS Server Development Guide

Exercise 5.4 Overwriting the web.xml file to enable HTTP tracing

In this exercise we are going to enable the
org.apache.chemistry.opencmis.server.support.filter.LoggingFilter
HTTP tracing filter. In order to do so we will have to make some changes to the web.xml for the
servlet.
Note: A generic OpenCMIS server gets its web.xml file from the framework so it will not normally
appear in your Eclipse project. But since we need to make changes to it we are going to add one and in
the process override the default framework version.

Go to your solution project's src/main/webapp/WEB-INF/ directory and copy the web.xml file
from there into the corresponding directory in your lab version of the project. Once it is in place,
uncomment out the following xml:

 <filter>
 <filter-name>LoggingFilter</filter-name>
 <filter-class>org.apache.chemistry.opencmis.server.support.filter.LoggingFilter</filter-class>
 <init-param>
 <param-name>LogDir</param-name>
 <param-value>/home</param-value>
 </init-param>
 <init-param>
 <param-name>PrettyPrint</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>LogHeader</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>Indent</param-name>
 <param-value>4</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <servlet-name>cmisatom10</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <servlet-name>cmisatom11</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <servlet-name>cmisws10</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <servlet-name>cmisws11</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>LoggingFilter</filter-name>
 <servlet-name>cmisbrowser</servlet-name>
 </filter-mapping>

Note the value of LogDir must be set to a valid directory. For the tutorial image we are using /home.

39

OpenCMIS Server Development Guide

So don't forget to set this value after you uncomment the xml. If you don't the output will go to your
temp directory. e.g. /tmp.

Note about performance and tracing:
Use this tracing filter with care! It can generate a huge amount of files (as you will see) and will slow
down performance significantly.

The screen shot in the illustration below is of the home directory after a Workbench login has taken
place. As you can see there are a total of 8 round trips made in the process of getting the service
document, retrieving the type definitions, getting the root folder children, etc.

Next we will open up a couple of these and see what a typical browser trace looks like.

40

OpenCMIS Server Development Guide

Examine the HTTP trace output

We are going to look as one of these requests so you can see what a typical trace looks like. Request
002 is a request to get the root folder object shown here:

GET /server/browser/test/root?objectId=%40root
%40&cmisselector=object&includeAllowableActions=true&includeRelationships=none&rend
itionFilter=cmis%3Anone&includePolicyIds=false&includeACL=false&succinct=true
HTTP/1.1
User-agent: Apache Chemistry OpenCMIS/1.0.0-SNAPSHOT
Authorization: Basic dGVzdDp0ZXN0
Accept-encoding: gzip,deflate
Cache-control: no-cache
Pragma: no-cache
Host: localhost:8080
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

The response contains all of the properties for the folder formatted as JSON since we are using the
browser binding. Here is the full text of the response:

HTTP/1.1 200
Content-Type: application/json;charset=UTF-8
Server: Apache-Chemistry-OpenCMIS/1.0.0-SNAPSHOT
Cache-Control: private, max-age=0

{
 "succinctProperties":{
 "cmis:objectId":"@root@",
 "cmis:name":"",
 "cmis:createdBy":"<unknown>",
 "cmis:lastModifiedBy":"<unknown>",
 "cmis:creationDate":1379287941000,
 "cmis:lastModificationDate":1379287941000,
 "cmis:changeToken":null,
 "cmis:description":null,
 "cmis:secondaryObjectTypeIds":null,
 "cmis:baseTypeId":"cmis:folder",
 "cmis:objectTypeId":"cmis:folder",
 "cmis:path":"\/",
 "cmis:parentId":null,
 "cmis:allowedChildObjectTypeIds":null
 },
 "allowableActions":{
 "canDeleteObject":false,
 "canUpdateProperties":true,
 "canGetFolderTree":true,
 "canGetProperties":true,
 "canGetObjectRelationships":false,
 "canGetObjectParents":false,
 "canGetFolderParent":false,
 "canGetDescendants":true,

41

OpenCMIS Server Development Guide

 "canMoveObject":false,
 "canDeleteContentStream":false,
 "canCheckOut":false,
 "canCancelCheckOut":false,
 "canCheckIn":false,
 "canSetContentStream":false,
 "canGetAllVersions":false,
 "canAddObjectToFolder":false,
 "canRemoveObjectFromFolder":false,
 "canGetContentStream":false,
 "canApplyPolicy":false,
 "canGetAppliedPolicies":false,
 "canRemovePolicy":false,
 "canGetChildren":true,
 "canCreateDocument":true,
 "canCreateFolder":true,
 "canCreateRelationship":false,
 "canCreateItem":false,
 "canDeleteTree":true,
 "canGetRenditions":false,
 "canGetACL":true,
 "canApplyACL":false
 }
}

As you can imagine. Having this level of tracing detail can prove invaluable when you are doing
interoperability tests with 3rd party CMIS clients.

Exercise 6: Testing your CMIS server

The objective of a CMIS server is to be able to serve any CMIS client. Compliance with the CMIS
specification is key. To make this compliance easier, OpenCMIS provides a test utility called the Test
Compatibility Kit (TCK), which makes a few hundred calls to the repository and checks if the
repository reacts as defined in the CMIS specification. It covers most areas of the specification and is
an essential testing tool. It cannot replace repository specific tests, though.

In this exercise we run the OpenCMIS TCK against the final version of the FileBridge Repository. The
TCK is a library and can be triggered in many different ways. There is, for example, an Ant task to run
the TCK and all TCK test are also JUnit tests. You can build your own TCK runner or just use the
CMIS Workbench. In this exercise we do the latter.

Open the CMIS Workbench and connect to the FileBridge server. When you press the TCK button in
the Workbench toolbar, a dialog should open that lets you pick the tests you want to run (shown in the
illustration below)

42

OpenCMIS Server Development Guide

By default all tests are enabled.

Now run the TCK and wait for the results.

When the TCK run is done, a new window opens with the results. If you need more details, open the
HTML report (at the bottom of the window). It contains more information and links to the test code.
The illustration below shows the test report output dialog:

43

OpenCMIS Server Development Guide

A TCK report can contain six different message types.

• INFO: Additional information about the test result.
• SKIPPED: The repository doesn’t support the feature and the test was skipped.
• OK: The test was successful.
• WARNING: The test was somewhat successful. The repository didn’t violate the

specification, but there may be interoperability issues. You should analyze the cause of
this warning and decide if you can ignore it.

• FAILURE: The TCK noticed a specification violation. There is something to fix.
• UNEXPECTED EXCEPTION: The TCK received an unexpected exception. There is

probably a bug in the repository implementation.

Go through the report and check all warnings and failures. Why do you think the FileBridge server has
failures?

44

OpenCMIS Server Development Guide

Exercise 7: Supporting multiple repositories for your service

For this last exercise we will go back to the solution project we initially setup if you don't have your lab
version running yet since we will need a working version of our FileBridge server. First we are going to
have a look at the code that reads and parses the
repository.properties file. Please navigate to the FileBridgeCmisServiceFactory class and
then to the

private void readConfiguration(...)

method. Here take a moment to see how we are currently parsing the .properties file to get a list of the
repositories that we will expose from our getRepositories implementation. Of course this is entirely
arbitrary how we are doing this, the important thing to note here is that we are maintaining a list of the
repositories and their IDs. Even though your native service may only have one repository that does not
mean that you cannot synthesize additional ones. For example you would have one repository that
serves up the documents, and one that serves up the same documents with with watermarks.
After you have absorbed what is going on here (in this case the code is self explanatory), open up the
repository.properties file for editing.
Recall the location of this file is shown in the illustration for the “A Note about Running From
Windows” section.
(also note that this example will be for Linux. If you are using Windows please modify the file paths to
something with a local drive letter and path as we did earlier.

Add another section to your .properties file like the example below:

class=org.example.cmis.server.FileBridgeCmisServiceFactory

login.1 = test:test
login.2 = reader:reader

repository.test = /
repository.test.readwrite = test
repository.test.readonly = reader

repository.test2 = /home
repository.test2.readwrite = test
repository.test2.readonly = reader

then start your server and reconnect with Workbench. Once you have done a load repositories, you
should see your new 'test2' repository as shown in the illustration below.

45

OpenCMIS Server Development Guide

Another example would be to have the code dynamically discover all of the mounted filesystems (e.g.
network drives) (for Windows use each drive letter) and expose each as its own repository. (left as an
exercise for the student)

46

OpenCMIS Server Development Guide

Miscellany for Developers

IBM Content Navigator's CMIS client - minimum requirements

Different CMIS clients have different requirements. For example some may only with with the
AtomPub binding. While others may required support for Query.
To be fully functional with IBM Content Navigator's CMIS client, a CMIS Server must meet the
following requirements:
 CMIS 1.0 compliant
 expose the optional capabilityQuery = metadataOnly (or greater)

◦ This is used to more efficiently get document folder children separately from folder children
for the different pane displays.

Other than the extra query capability there are no other 'optional' features needed. The
Manning CMIS book (see references section) chapter 14 covers the subject of building a
query parser which we will not be able to cover in this short tutorial.
Instead for this tutorial we have added a tiny bit of code to fileBridge so that is can handle two specific
queries namely :

SELECT * from cmis:document WHERE in_folder('xx')
and

SELECT * from cmis:folder WHERE in_folder('xx')

With this tiny bit of query code added (see FileBridgeRepository.query()) fileBridge is
compatible with Navigator. See illustration below showing Navigator browsing our local
filesystem:

47

OpenCMIS Server Development Guide

Illustration 7: IBM Content Navigator browsing our demo fileBridge repository.

Subversion clients for Windows

 (GUI) TortoiseSVN - http://sourceforge.net/projects/tortoisesvn/
 (command line) – These are listed in the Windows section toward the bottom of

http://subversion.apache.org/packages.html

48

http://subversion.apache.org/packages.html
http://sourceforge.net/projects/tortoisesvn/

OpenCMIS Server Development Guide

Auto start Chemistry Workbench connected to your server

If you would like your Workbench to start up every time connected to the same server with the same
credentials. (As is often the case in developer environments)

Create a shell file to kick off Workbench along these lines (linux version):

#! /bin/sh
export CUSTOM_JAVA_OPTS="\
-Dcmis.workbench.binding=browser \
-Dcmis.workbench.url=http://localhost:8080/server/browser \
-Dcmis.workbench.user=test \
-Dcmis.workbench.password=test \
-Dcmis.workbench.compression=true \
-Dcmis.workbench.cookies=true"

Now cd to your directory where you have Workbench
then run the stock workbench.sh script.
./workbench.sh

Conclusion for Part I
This concludes this document. In this tutorial you have become familiar with the following:
 Building OpenCMIS server and client library dependencies from the source.
 Setting up a typical OpenCMIS server build environment using Eclipse and Maven 3.
 Familiarity with the Chemistry Workbench CMIS client.
 Understanding key points necessary to build an OpenCMIS server with enough functionality to be

browsed by Chemistry Workbench client.
 Understanding how to add additional library dependencies to your server as in the case for a

logging framework.
 Understand how to hook up HTTP tracing for debugging and interoperability testing.

49

OpenCMIS Server Development Guide

Part 2 – The Server Extensions Framework
Part 2 (which was added for version 1.1 of this document) will introduce you to the concept of deploy
time CMIS server extensions. We will then show you how to update the FileBridge server from Part 1
so that it will accept any of these extensions. Finally we will walk you through a complete extension
example that you can add to any CMIS server that supports this new feature.

Part 2 includes two main subparts:
• Server side considerations: Covers the high level design of the framework and changes needed

to make your server support the new extensions. This includes a new version of FileBridge and
a guided tour through the changes needed.

• Building a Server Extension: This includes a simple reference extension project along with
instructions for deploying it to your FileBridge (or any OpenCMIS server)

Part 2 is written to be a brief intro into the new extension framework for someone who is already
familiar with the concepts of OpenCMIS server development.

What are Server Extensions?

Server extensions allow consumers of CMIS servers (customers and third parties) to treat a CMIS
server as a an open service platform they can extend and change as needed. Extensions are the
OpenCMIS version of a feature that started out experimentally in IBM's line of CMIS servers in 2014.
IBM was getting requests for custom CMIS features that would only be useful for a single customer or
a single ECM related vertical. They needed a way for these consumers and partners to independently
develop their own custom add-ons and plug them in at deploy time.
Sometimes these add-ons are very simple, like a specialized audit log that needs to be created for
certain CMIS calls. Others want to add in entire optional parts of CMIS on top of the off the shelf
version. For example they want to plug in their own cmis:policy behaviors, rendition implementations
or even integrate certain operations with their business processes. Or instead of adding features they
may want to tweak an existing behavior slightly. For example, a plug in that watermarks any PDF
files that are retrieved for certain types of users, but leaves all the metadata unchanged.

Supported versions of OpenCMIS

CMIS server extensions are supported on versions 0.11.0 and later of the OpenCMIS server framework.
If you wish to use the framework prior to the full release you can grab the 1.0.0-snapshot and build it
locally.

Engineering requirements

To make them easy to develop and deploy we defined the following additional requirements:
• Extensions must be uncoupled from the server.

◦ A customer or partner can develop independent extensions and plug them into any (current)

50

OpenCMIS Server Development Guide

OpenCMIS server at deploy time.
◦ A CMIS server will not need to know whether it has extensions installed. (chaining must

be handled entirely by the shared framework)
• The only dependencies on these extensions should be libraries they already use from Apache

Chemistry (OpenCMIS). Nothing from a specific vendor required, unless the extension is using
a native library for its function.

• Developing these extensions should be exactly like building a server so that there is no
(additional) knowledge needed to make them for a developer already familiar with the
OpenCMIS server framework.

• A CMIS server should support an unlimited number of extensions chained in the order that the
customer specifies at deploy time.

The image below shows the typical lifecycle of these extensions at a customer site.

Note that in many cases the same custom extension can be deployed to any number of vendor's CMIS
implementations assuming it is not doing something vendor specific. For example, a watermarking, or
detailed logging extension would be vendor neutral.

51

OpenCMIS Server Development Guide

Design and Discussion

The illustration below shows the overall design of the new server extensions broken down to three
color categories. Blue showing the parts that the vendors ships to customers. Gold is the part that is
from the OpenCMIS libraries, and the green is the part supplied by a consumer of the CMIS service.

52

OpenCMIS Server Development Guide

As you can see from the diagram above. Extensions (shown in green) end up implementing (via their
extension of the AbstraceServiceWrapper) the same CmisService interface as all OpenCMIS servers.
Any function they do not override will be handled by another extension further down the chain and
eventually by the main CMIS service itself (shown in blue). The CmisServiceWrapper handles
reading in the registered extensions from the repository.properties file and sets up the service chain
between them. If the main CmisService adds any objects to the CallContext either in its
ServiceFactory or while processing requests, all of the extensions on the request chain will be able to
have access to that object. A common use case for this is as follows: The main CMIS service has
already setup a connection with the underlying repository. If it shares that connection with the
CallContext then extensions can share that (already authenticated for the call) connection to improve
performance of the extensions. Any object can be shared in the CallContext including objects that are
shared between extensions. Just remember that the order that the extensions are registered will prevent
one extension from seeing objects added from an extension later in the chain. And the order is reversed
between the requests and responses.

ServerSide Changes to enable extensions

This section will walk you through the small adjustments you need to make to your current OpenCMIS
based server (in this case FileBridge but the changes are the same in general). We encourage you to
follow along in the latest version of the FileBridge Server so see these changes with more context.

Changes to CmisService implementation (FileBridgeCmisService)

The changes to your service amount to a modification of one line (and the corresponding import).
Where previously your service would extend the AbstractService like this:

public class FileBridgeCmisService extends AbstractCmisService

You will now add an implements for the CallContextAwareCmisService interface like this:

public class FileBridgeCmisService extends AbstractCmisService
implements CallContextAwareCmisService

which opens up the ability to get and set the internal CallContext object. Those accessor functions are
already present, so nothing else to do here.

Changes to your ServiceFactory (FileBridgeCmisServiceFactory)

The WrapperManager

As we have discussed in the intro section, the CmisServiceWrapperManager is the class that
manages the chain of extensions so it makes sense that we would have to initialize it in the service

53

OpenCMIS Server Development Guide

factory. First off we will declare it as a private like this:

 private CmisServiceWrapperManager wrapperManager;

Then we will allocate it, and initialize it in our init() method like this:

wrapperManager = new CmisServiceWrapperManager();
wrapperManager.addWrappersFromServiceFactoryParameters(parameters);
wrapperManager.addOuterWrapper(ConformanceCmisServiceWrapper.class,

DEFAULT_MAX_ITEMS_TYPES,
DEFAULT_DEPTH_TYPES,
DEFAULT_MAX_ITEMS_OBJECTS,
DEFAULT_DEPTH_OBJECTS);

The last line (in bold) sets up the ConformanceCmisServiceWrapper, which is a replacement
of the old way we did this in the getService where we would allocate and initialize a new
CmisServiceWrapper and hand it our newly created service object.

In our getService method the main difference is that now that we have the new wrapperManager, we
give it our newly created service implementation so that it can be added into the bottom of the chain of
extensions (if there are any found at runtime). In the case of the fileShareService the code looks like
this:

service =
 (CallContextAwareCmisService)wrapperManager.wrap(fileShareService);
threadLocalService.set(service);

The last line passes the fully setup wrapper manager to our

ThreadLocal<CallContextAwareCmisService>

Which is defined in place of the old

ThreadLocal<CmisServiceWrapper<service class name here>> declaration.

That's all there is. All the rest of your server code will continue to work the same and it will be
unaware if there are any extensions running on top.

Setting the MutableCallContext (optional)

If your Service implementation needs to be able to share objects or data with extensions.

For example your service wants to share the connection it has to a underlying database or back
end server so that extensions will not have to establish one of their own.

54

OpenCMIS Server Development Guide

You will want to cast your CallContext object into a Mutable one, .put() your values in and
then set your call context for your service. An example of this is done in the .getService()
method in the ServiceFactory for Filebridge as follows:

MutableCallContext mcc = (MutableCallContext)context;

mcc.put("keyname",object_to_share);

service.setCallContext(context);

This does not have to be done from your factory if it is not convenient, rather it can be done anywhere
in your service implementation. Just keep in mind that if you are setting these values when your
service is called, then your extensions will not be able to access that information until they are
processing the response from your service as opposed to before the request is processed.

Building a Server Extension

The CMIS server extension example is located at /cmis-extension in the
https://github.com/cmisdocs/ServerDevelopmentGuide
project. This example is the simplest extension you could make and still have it do something useful.
In this case the extension will hook into any calls for (folder) getChildren() and log some details
about the request and then log the time it took (in milliseconds) for the CMIS service to process the
request. When you look over the sample extension you will see there are really only two important
files to the whole thing. The first is the pom.xml which contains the dependencies for an extension.

Note: In the simplest case you only really have one dependency, which is chemistry-
opencmis-server-support.

The second file is the extension itself which must extend AbstractCmisServiceWrapper. This
base class is the reason that our own wrapper class can be so small. Anything that we don't wish to
override will be handled as a straight pass-through by our base class.

The AbstractCmisServiceWrapper

As you can see by looking at the CmisCustomLoggingServiceWrapper.java file. The signatures of the
methods that we override/modify are the same CmisService methods that we talked about in part I of
this guide. If you know how to build CMIS servers with OpenCMIS then you already know what you
need to build server extensions. It's the same interface.
Have a look at the getChildren() method now. Any code you place before the passthrough to the
underlying service getWrappedService().getChildren(...) will be to modify the
request. You can also choose not to call the underlying service at all and completely override with
your own implementation.
Any code placed after the call to the base service will allow you to inspect and or modify the response
from the vendors CMIS implementation before it is returned to the client.

(see zip file of extension project until this is checked into git)

55

https://github.com/cmisdocs/ServerDevelopmentGuide

OpenCMIS Server Development Guide

Deploying the Extension

Once you have built your extension
(mvn clean install – or through the eclipse gui – just like the server we built in part 1)
all that is left is to plug it into the vendors CMIS extension.
Note that adding an extension to a CMIS implementation that does not support 0.11.0 extensions will
have no effect, so make sure your vendor has added support. If they have not, point them to this guide!
Take your .jar file from your target build directory and add it to the vendor's \WEB-INF\lib\ in
their WAR file. (in the case of the sample, the file is cmis-extension-1.0-SNAPSHOT.jar)
Now that your extension files are on the classpath, all that is left to do is hook them in by adding some
instructions for the WrapperManager into the repository.properties file.

Registering Extensions

Your extensions can be registered in the repository.properties file (located in \WEB-INF\classes
like this:

servicewrapper.1=com.example.my.SimpleWrapper
servicewrapper.2=com.example.my.AdvancedWrapper,1,cmis:document
servicewrapper.3=com.example.my.DebuggingWrapper,testRepositoryId

The number at the key is the position in the wrapper stack. Lower numbers are outer wrappers, higher
numbers are inner wrappers closer to the vendor's service implementation.
Wrappers can have parameters that can be attached as a comma separated list to the class name. They
are provided to the wrapper implementation when the manager calls
AbstractCmisServiceWrapper.initialize(). The last two examples show these optional
parameters.

In the case of our sample wrapper you will want to add the following line:

servicewrapper.1=org.foo.CmisCustomLoggingServiceWrapper

56

OpenCMIS Server Development Guide

Conclusion of Part 2

In part two you were introduced to the concept of CMIS deploy time server extensions including their
design. You have seen how to modify the FileBridge server from Part 1 to support these server
extensions. You have also built your own simple custom extension that outputs logging information for
all folder.getChildren() calls that arrive at your server.

Resources

OASIS CMIS 1.1 Specification : http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html

OASIS CMIS 1.1 Specification (PDF version) : http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-
v1.1.pdf

CMIS Cheat Sheet : http://cmis.alfresco.com/cmis-cheatsheet.pdf

CMIS and Apache Chemistry in Action (Manning) : http://www.manning.com/mueller/

OpenCMIS 0.10.0 JavaDoc : http://chemistry.apache.org/java/0.10.0/maven/apidocs/

Apache Maven : http://maven.apache.org/

Eclipse : http://eclipse.org/

Apache Chemistry : http://chemistry.apache.org/

57

http://chemistry.apache.org/
http://eclipse.org/
http://maven.apache.org/
http://chemistry.apache.org/java/0.10.0/maven/apidocs/
http://www.manning.com/mueller/
http://cmis.alfresco.com/cmis-cheatsheet.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pdf
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pd
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.pd
http://docs.oasis-open.org/cmis/CMIS/v1.1/os/CMIS-v1.1-os.html

	Introduction
	Overview for Parts 1 and 2
	Acknowledgements
	Prerequisites
	Goals of the tutorial

	Tutorial task description
	Initial setup of your developer environment
	Getting and building the latest OpenCMIS libraries

	Initial build of OpenCMIS
	Building OpenCMIS
	Getting the project source from GitHub
	Building the solution from the command line

	Building and running from Eclipse
	Importing the project into Eclipse
	Setting up a Tomcat server target in Eclipse
	A note about running from Windows

	Running and debugging from Eclipse
	A note about startup timeouts

	Connecting CMIS Workbench to our local server
	Starting Chemistry Workbench

	Creating a new server project from scratch
	A cooks tour of the cmisFileBridge project
	OpenCMIS Server Framework Interfaces
	CmisService
	CmisServiceFactory

	OpenCMIS Server Framework Operation
	FileBridgeCmisServiceFactory
	FileBridgeCmisService
	FileBridgeRepositoryManager
	FileBridgeRepository
	ContentRangeInputStream
	FileBridgeUserManager
	FileBridgeUtils
	FileBridgeTypeManager

	Tutorial exercises
	Exercise 1: Filling out the RepositoryInfo structures
	Exercise 1.1 Setting the CMIS supported version
	Exercise 1.2 Setting product, version and vendor
	Exercise 1.3 Setting the root folder ID

	Exercise 2: Computing CMIS IDs for your objects
	Spot the design problem
	Exercise 2.1 Handle null and root when computing IDs

	Exercise 3: Returning an Object
	Exercise 3.1 Getting the File or Folder
	Exercise 3.2 Identify all of the Properties
	Exercise 3.3 Return the Properties
	Exercise 3.4 Honoring the Property Filter

	Exercise 4: getContentStream
	Exercise 4.1 Offset and Range

	Exercise 5: Adding logging and tracing to your server
	Exercise 5.1 Adding slf4j to our project for logging
	Exercise 5.2 Adding some logging code
	Exercise 5.3 Observe the logging output
	Exercise 5.4 Overwriting the web.xml file to enable HTTP tracing
	Examine the HTTP trace output

	Exercise 6: Testing your CMIS server
	Exercise 7: Supporting multiple repositories for your service

	Miscellany for Developers
	IBM Content Navigator's CMIS client - minimum requirements
	Subversion clients for Windows
	Auto start Chemistry Workbench connected to your server

	Conclusion for Part I
	Part 2 – The Server Extensions Framework
	What are Server Extensions?
	Supported versions of OpenCMIS
	Engineering requirements
	Design and Discussion

	ServerSide Changes to enable extensions
	Changes to CmisService implementation (FileBridgeCmisService)
	Changes to your ServiceFactory (FileBridgeCmisServiceFactory)
	The WrapperManager
	Setting the MutableCallContext (optional)

	Building a Server Extension
	The AbstractCmisServiceWrapper

	Deploying the Extension
	Registering Extensions

	Conclusion of Part 2

	Resources

