Skip to content

Commit a784321

Browse files
author
DB Tsai
committed
fix style
1 parent 8ec65d2 commit a784321

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

mllib/src/test/scala/org/apache/spark/ml/classification/LogisticRegressionSuite.scala

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -165,7 +165,7 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
165165
}
166166
}
167167

168-
test("MultilabelSummarizer") {
168+
test("MultiClassSummarizer") {
169169
val summarizer1 = (new MultiClassSummarizer)
170170
.add(0.0).add(3.0).add(4.0).add(3.0).add(6.0)
171171
assert(summarizer1.histogram.zip(Array[Long](1, 0, 0, 2, 1, 0, 1)).forall(x => x._1 === x._2))
@@ -312,8 +312,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
312312
* > data <- read.csv("path", header=FALSE)
313313
* > label = factor(data$V1)
314314
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
315-
* > weights =
316-
* coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12, intercept=FALSE))
315+
* > weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12,
316+
* intercept=FALSE))
317317
* > weights
318318
* 5 x 1 sparse Matrix of class "dgCMatrix"
319319
* s0
@@ -377,8 +377,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
377377
* > data <- read.csv("path", header=FALSE)
378378
* > label = factor(data$V1)
379379
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
380-
* > weights =
381-
* coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37, intercept=FALSE))
380+
* > weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37,
381+
* intercept=FALSE))
382382
* > weights
383383
* 5 x 1 sparse Matrix of class "dgCMatrix"
384384
* s0
@@ -442,8 +442,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
442442
* > data <- read.csv("path", header=FALSE)
443443
* > label = factor(data$V1)
444444
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
445-
* > weights =
446-
* coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21, intercept=FALSE))
445+
* > weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21,
446+
* intercept=FALSE))
447447
* > weights
448448
* 5 x 1 sparse Matrix of class "dgCMatrix"
449449
* s0

0 commit comments

Comments
 (0)