@@ -165,7 +165,7 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
165
165
}
166
166
}
167
167
168
- test(" MultilabelSummarizer " ) {
168
+ test(" MultiClassSummarizer " ) {
169
169
val summarizer1 = (new MultiClassSummarizer )
170
170
.add(0.0 ).add(3.0 ).add(4.0 ).add(3.0 ).add(6.0 )
171
171
assert(summarizer1.histogram.zip(Array [Long ](1 , 0 , 0 , 2 , 1 , 0 , 1 )).forall(x => x._1 === x._2))
@@ -312,8 +312,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
312
312
* > data <- read.csv("path", header=FALSE)
313
313
* > label = factor(data$V1)
314
314
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
315
- * > weights =
316
- * coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12, intercept=FALSE))
315
+ * > weights = coef(glmnet(features,label, family="binomial", alpha = 1, lambda = 0.12,
316
+ * intercept=FALSE))
317
317
* > weights
318
318
* 5 x 1 sparse Matrix of class "dgCMatrix"
319
319
* s0
@@ -377,8 +377,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
377
377
* > data <- read.csv("path", header=FALSE)
378
378
* > label = factor(data$V1)
379
379
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
380
- * > weights =
381
- * coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37, intercept=FALSE))
380
+ * > weights = coef(glmnet(features,label, family="binomial", alpha = 0, lambda = 1.37,
381
+ * intercept=FALSE))
382
382
* > weights
383
383
* 5 x 1 sparse Matrix of class "dgCMatrix"
384
384
* s0
@@ -442,8 +442,8 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext {
442
442
* > data <- read.csv("path", header=FALSE)
443
443
* > label = factor(data$V1)
444
444
* > features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5))
445
- * > weights =
446
- * coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21, intercept=FALSE))
445
+ * > weights = coef(glmnet(features,label, family="binomial", alpha = 0.38, lambda = 0.21,
446
+ * intercept=FALSE))
447
447
* > weights
448
448
* 5 x 1 sparse Matrix of class "dgCMatrix"
449
449
* s0
0 commit comments