|
| 1 | +"""Code for numpy arrays from json-numpy under MIT |
| 2 | +
|
| 3 | +MIT License |
| 4 | +
|
| 5 | +Copyright (c) 2021-2025 Crimson-Crow <[email protected]> |
| 6 | +
|
| 7 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 8 | +of this software and associated documentation files (the "Software"), to deal |
| 9 | +in the Software without restriction, including without limitation the rights |
| 10 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 11 | +copies of the Software, and to permit persons to whom the Software is |
| 12 | +furnished to do so, subject to the following conditions: |
| 13 | +
|
| 14 | +The above copyright notice and this permission notice shall be included in all |
| 15 | +copies or substantial portions of the Software. |
| 16 | +
|
| 17 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 18 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 19 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 20 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 21 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 22 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 23 | +SOFTWARE. |
| 24 | +""" |
| 25 | + |
| 26 | +import os |
| 27 | +import json |
| 28 | +from base64 import b64decode, b64encode |
| 29 | + |
| 30 | +from numpy import frombuffer, generic, ndarray |
| 31 | +from numpy.lib.format import descr_to_dtype, dtype_to_descr |
| 32 | + |
| 33 | + |
| 34 | +def _hint_tuples(item): |
| 35 | + """See https://stackoverflow.com/a/15721641/1745538""" |
| 36 | + if isinstance(item, tuple): |
| 37 | + return {"__tuple__": [_hint_tuples(e) for e in item]} |
| 38 | + if isinstance(item, list): |
| 39 | + return [_hint_tuples(e) for e in item] |
| 40 | + if isinstance(item, dict): |
| 41 | + return {key: _hint_tuples(value) for key, value in item.items()} |
| 42 | + return item |
| 43 | + |
| 44 | + |
| 45 | +def _dehint_tuples(item): |
| 46 | + """See https://stackoverflow.com/a/15721641/1745538""" |
| 47 | + if isinstance(item, tuple): |
| 48 | + return tuple([_dehint_tuples(e) for e in item]) |
| 49 | + if isinstance(item, list): |
| 50 | + return [_dehint_tuples(e) for e in item] |
| 51 | + if isinstance(item, dict) and "__tuple__" in item: |
| 52 | + return tuple([_dehint_tuples(e) for e in item["__tuple__"]]) |
| 53 | + return item |
| 54 | + |
| 55 | + |
| 56 | +class _CustomEncoder(json.JSONEncoder): |
| 57 | + """ |
| 58 | + See https://stackoverflow.com/a/15721641/1745538 |
| 59 | + """ |
| 60 | + |
| 61 | + def encode(self, obj): |
| 62 | + return super().encode(_hint_tuples(obj)) |
| 63 | + |
| 64 | + def default(self, o): |
| 65 | + from jax import dtypes |
| 66 | + import jax.random as jrng |
| 67 | + import jax.numpy as jnp |
| 68 | + import numpy as np |
| 69 | + |
| 70 | + if isinstance(o, jnp.ndarray) and dtypes.issubdtype(o.dtype, dtypes.prng_key): |
| 71 | + o = jrng.key_data(o) |
| 72 | + o = np.array(o) |
| 73 | + data = o.data if o.flags["C_CONTIGUOUS"] else o.tobytes() |
| 74 | + return { |
| 75 | + "__jax_rng_key__": b64encode(data).decode(), |
| 76 | + "dtype": dtype_to_descr(o.dtype), |
| 77 | + "shape": _hint_tuples(o.shape), |
| 78 | + } |
| 79 | + |
| 80 | + if isinstance(o, jnp.ndarray): |
| 81 | + o = np.array(o) |
| 82 | + data = o.data if o.flags["C_CONTIGUOUS"] else o.tobytes() |
| 83 | + return { |
| 84 | + "__jax__": b64encode(data).decode(), |
| 85 | + "dtype": dtype_to_descr(o.dtype), |
| 86 | + "shape": _hint_tuples(o.shape), |
| 87 | + } |
| 88 | + |
| 89 | + if isinstance(o, (ndarray, generic)): |
| 90 | + data = o.data if o.flags["C_CONTIGUOUS"] else o.tobytes() |
| 91 | + return { |
| 92 | + "__numpy__": b64encode(data).decode(), |
| 93 | + "dtype": dtype_to_descr(o.dtype), |
| 94 | + "shape": _hint_tuples(o.shape), |
| 95 | + } |
| 96 | + |
| 97 | + if isinstance(o, np.random.RandomState): |
| 98 | + return {"__numpy_random_state__": _hint_tuples(o.get_state())} |
| 99 | + |
| 100 | + if isinstance(o, np.random.Generator): |
| 101 | + return {"__numpy_random_generator__": _hint_tuples(o.bit_generator.state)} |
| 102 | + |
| 103 | + raise TypeError( |
| 104 | + f"Object of type {o.__class__.__name__} is not JSON serializable" |
| 105 | + ) |
| 106 | + |
| 107 | + |
| 108 | +def _object_hook(dct): |
| 109 | + import jax.random as jrng |
| 110 | + import jax.numpy as jnp |
| 111 | + import numpy as np |
| 112 | + |
| 113 | + if "__jax_rng_key__" in dct: |
| 114 | + np_obj = frombuffer( |
| 115 | + b64decode(dct["__jax_rng_key__"]), descr_to_dtype(dct["dtype"]) |
| 116 | + ) |
| 117 | + arr = ( |
| 118 | + np_obj.reshape(shape) |
| 119 | + if (shape := _dehint_tuples(dct["shape"])) |
| 120 | + else np_obj[0] |
| 121 | + ) |
| 122 | + key = jnp.array(arr) |
| 123 | + return jrng.wrap_key_data(key) |
| 124 | + |
| 125 | + if "__jax__" in dct: |
| 126 | + np_obj = frombuffer(b64decode(dct["__jax__"]), descr_to_dtype(dct["dtype"])) |
| 127 | + arr = ( |
| 128 | + np_obj.reshape(shape) |
| 129 | + if (shape := _dehint_tuples(dct["shape"])) |
| 130 | + else np_obj[0] |
| 131 | + ) |
| 132 | + return jnp.array(arr) |
| 133 | + |
| 134 | + if "__numpy__" in dct: |
| 135 | + np_obj = frombuffer(b64decode(dct["__numpy__"]), descr_to_dtype(dct["dtype"])) |
| 136 | + return ( |
| 137 | + np_obj.reshape(shape) |
| 138 | + if (shape := _dehint_tuples(dct["shape"])) |
| 139 | + else np_obj[0] |
| 140 | + ) |
| 141 | + |
| 142 | + if "__tuple__" in dct: |
| 143 | + return _dehint_tuples(dct) |
| 144 | + |
| 145 | + if "__numpy_random_state__" in dct: |
| 146 | + rng = np.random.RandomState() |
| 147 | + rng.set_state(_dehint_tuples(dct["__numpy_random_state__"])) |
| 148 | + return rng |
| 149 | + |
| 150 | + if "__numpy_random_generator__" in dct: |
| 151 | + data = _dehint_tuples(dct["__numpy_random_generator__"]) |
| 152 | + bg = getattr(np.random, data["bit_generator"])() |
| 153 | + bg.state = data |
| 154 | + return np.random.Generator(bg) |
| 155 | + |
| 156 | + return dct |
| 157 | + |
| 158 | + |
| 159 | +def dump(*args, **kwargs): |
| 160 | + return json.dump(*args, cls=_CustomEncoder, **kwargs) |
| 161 | + |
| 162 | + |
| 163 | +def dumps(*args, **kwargs): |
| 164 | + return json.dumps(*args, cls=_CustomEncoder, **kwargs) |
| 165 | + |
| 166 | + |
| 167 | +def load(*args, **kwargs): |
| 168 | + return json.load(*args, object_hook=_object_hook, **kwargs) |
| 169 | + |
| 170 | + |
| 171 | +def loads(*args, **kwargs): |
| 172 | + return json.loads(*args, object_hook=_object_hook, **kwargs) |
| 173 | + |
| 174 | + |
| 175 | +class EstimatorToFromJSONMixin: |
| 176 | + def _init_from_json(self, **data): |
| 177 | + for k, v in data.items(): |
| 178 | + setattr(self, k, v) |
| 179 | + |
| 180 | + def to_json(self, out=None): |
| 181 | + """Serialize this estimator to JSON. |
| 182 | +
|
| 183 | + Parameters |
| 184 | + ---------- |
| 185 | + out : file-like object, string, or None, optional |
| 186 | + If a file-like object or a string, the data is written |
| 187 | + using the `write` method, creating / overwriting a file |
| 188 | + if a string is given. If None, then only the JSON string |
| 189 | + is returned. |
| 190 | +
|
| 191 | + Returns |
| 192 | + ------- |
| 193 | + data : str |
| 194 | + The JSON-serialized data as a string. |
| 195 | + """ |
| 196 | + data = {} |
| 197 | + for attr in set(self.json_attributes_) | set(self.get_params().keys()): |
| 198 | + if hasattr(self, attr): |
| 199 | + data[attr] = getattr(self, attr) |
| 200 | + data = dumps(data) |
| 201 | + |
| 202 | + if out is None: |
| 203 | + pass |
| 204 | + elif hasattr(out, "write"): |
| 205 | + out.write(data) |
| 206 | + else: |
| 207 | + with open(out, "w") as fp: |
| 208 | + fp.write(data) |
| 209 | + |
| 210 | + return data |
| 211 | + |
| 212 | + @classmethod |
| 213 | + def from_json(cls, data): |
| 214 | + """Load an estimator from JSON data. |
| 215 | +
|
| 216 | + Parameters |
| 217 | + ---------- |
| 218 | + data : str or file-like |
| 219 | + The JSON data. |
| 220 | +
|
| 221 | + Returns |
| 222 | + ------- |
| 223 | + estimator |
| 224 | + """ |
| 225 | + if hasattr(data, "read"): |
| 226 | + data = load(data) |
| 227 | + else: |
| 228 | + if os.path.exists(data): |
| 229 | + with open(str, "r") as fp: |
| 230 | + data = loads(fp.read()) |
| 231 | + else: |
| 232 | + data = loads(data) |
| 233 | + |
| 234 | + obj = cls() |
| 235 | + params = {k: data[k] for k in obj.get_params() if k in data} |
| 236 | + obj.set_params(**params) |
| 237 | + for k in obj.get_params(): |
| 238 | + if k in data: |
| 239 | + del data[k] |
| 240 | + |
| 241 | + obj._init_from_json(**data) |
| 242 | + |
| 243 | + return obj |
0 commit comments