Skip to content

Commit 48a820a

Browse files
authored
Update Inference Pipeline with Scikit-learn and Linear Learner notebook for SageMaker v2 API. Addresses #1891 (#1892)
1 parent 99dd54c commit 48a820a

File tree

1 file changed

+15
-16
lines changed

1 file changed

+15
-16
lines changed

sagemaker-python-sdk/scikit_learn_inference_pipeline/Inference Pipeline with Scikit-learn and Linear Learner.ipynb

Lines changed: 15 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -333,7 +333,7 @@
333333
" entry_point=script_path,\n",
334334
" role=role,\n",
335335
" framework_version=FRAMEWORK_VERSION,\n",
336-
" train_instance_type=\"ml.c4.xlarge\",\n",
336+
" instance_type=\"ml.c4.xlarge\",\n",
337337
" sagemaker_session=sagemaker_session)\n"
338338
]
339339
},
@@ -398,8 +398,8 @@
398398
"outputs": [],
399399
"source": [
400400
"import boto3\n",
401-
"from sagemaker.amazon.amazon_estimator import get_image_uri\n",
402-
"ll_image = get_image_uri(boto3.Session().region_name, 'linear-learner')"
401+
"from sagemaker.image_uris import retrieve\n",
402+
"ll_image = retrieve('linear-learner', boto3.Session().region_name)"
403403
]
404404
},
405405
{
@@ -414,17 +414,17 @@
414414
"ll_estimator = sagemaker.estimator.Estimator(\n",
415415
" ll_image,\n",
416416
" role, \n",
417-
" train_instance_count=1, \n",
418-
" train_instance_type='ml.m4.2xlarge',\n",
419-
" train_volume_size = 20,\n",
420-
" train_max_run = 3600,\n",
417+
" instance_count=1, \n",
418+
" instance_type='ml.m4.2xlarge',\n",
419+
" volume_size = 20,\n",
420+
" max_run = 3600,\n",
421421
" input_mode= 'File',\n",
422422
" output_path=s3_ll_output_location,\n",
423423
" sagemaker_session=sagemaker_session)\n",
424424
"\n",
425425
"ll_estimator.set_hyperparameters(feature_dim=10, predictor_type='regressor', mini_batch_size=32)\n",
426426
"\n",
427-
"ll_train_data = sagemaker.session.s3_input(\n",
427+
"ll_train_data = sagemaker.inputs.TrainingInput(\n",
428428
" preprocessed_train, \n",
429429
" distribution='FullyReplicated',\n",
430430
" content_type='text/csv', \n",
@@ -494,16 +494,15 @@
494494
"metadata": {},
495495
"outputs": [],
496496
"source": [
497-
"from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor\n",
498-
"from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON\n",
497+
"from sagemaker.predictor import Predictor\n",
498+
"from sagemaker.serializers import CSVSerializer\n",
499+
"\n",
499500
"payload = 'M, 0.44, 0.365, 0.125, 0.516, 0.2155, 0.114, 0.155'\n",
500501
"actual_rings = 10\n",
501-
"predictor = RealTimePredictor(\n",
502-
" endpoint=endpoint_name,\n",
502+
"predictor = Predictor(\n",
503+
" endpoint_name=endpoint_name,\n",
503504
" sagemaker_session=sagemaker_session,\n",
504-
" serializer=csv_serializer,\n",
505-
" content_type=CONTENT_TYPE_CSV,\n",
506-
" accept=CONTENT_TYPE_JSON)\n",
505+
" serializer=CSVSerializer())\n",
507506
"\n",
508507
"print(predictor.predict(payload))"
509508
]
@@ -544,7 +543,7 @@
544543
"name": "python",
545544
"nbconvert_exporter": "python",
546545
"pygments_lexer": "ipython3",
547-
"version": "3.6.5"
546+
"version": "3.6.10"
548547
}
549548
},
550549
"nbformat": 4,

0 commit comments

Comments
 (0)