|
333 | 333 | " entry_point=script_path,\n",
|
334 | 334 | " role=role,\n",
|
335 | 335 | " framework_version=FRAMEWORK_VERSION,\n",
|
336 |
| - " train_instance_type=\"ml.c4.xlarge\",\n", |
| 336 | + " instance_type=\"ml.c4.xlarge\",\n", |
337 | 337 | " sagemaker_session=sagemaker_session)\n"
|
338 | 338 | ]
|
339 | 339 | },
|
|
398 | 398 | "outputs": [],
|
399 | 399 | "source": [
|
400 | 400 | "import boto3\n",
|
401 |
| - "from sagemaker.amazon.amazon_estimator import get_image_uri\n", |
402 |
| - "ll_image = get_image_uri(boto3.Session().region_name, 'linear-learner')" |
| 401 | + "from sagemaker.image_uris import retrieve\n", |
| 402 | + "ll_image = retrieve('linear-learner', boto3.Session().region_name)" |
403 | 403 | ]
|
404 | 404 | },
|
405 | 405 | {
|
|
414 | 414 | "ll_estimator = sagemaker.estimator.Estimator(\n",
|
415 | 415 | " ll_image,\n",
|
416 | 416 | " role, \n",
|
417 |
| - " train_instance_count=1, \n", |
418 |
| - " train_instance_type='ml.m4.2xlarge',\n", |
419 |
| - " train_volume_size = 20,\n", |
420 |
| - " train_max_run = 3600,\n", |
| 417 | + " instance_count=1, \n", |
| 418 | + " instance_type='ml.m4.2xlarge',\n", |
| 419 | + " volume_size = 20,\n", |
| 420 | + " max_run = 3600,\n", |
421 | 421 | " input_mode= 'File',\n",
|
422 | 422 | " output_path=s3_ll_output_location,\n",
|
423 | 423 | " sagemaker_session=sagemaker_session)\n",
|
424 | 424 | "\n",
|
425 | 425 | "ll_estimator.set_hyperparameters(feature_dim=10, predictor_type='regressor', mini_batch_size=32)\n",
|
426 | 426 | "\n",
|
427 |
| - "ll_train_data = sagemaker.session.s3_input(\n", |
| 427 | + "ll_train_data = sagemaker.inputs.TrainingInput(\n", |
428 | 428 | " preprocessed_train, \n",
|
429 | 429 | " distribution='FullyReplicated',\n",
|
430 | 430 | " content_type='text/csv', \n",
|
|
494 | 494 | "metadata": {},
|
495 | 495 | "outputs": [],
|
496 | 496 | "source": [
|
497 |
| - "from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor\n", |
498 |
| - "from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON\n", |
| 497 | + "from sagemaker.predictor import Predictor\n", |
| 498 | + "from sagemaker.serializers import CSVSerializer\n", |
| 499 | + "\n", |
499 | 500 | "payload = 'M, 0.44, 0.365, 0.125, 0.516, 0.2155, 0.114, 0.155'\n",
|
500 | 501 | "actual_rings = 10\n",
|
501 |
| - "predictor = RealTimePredictor(\n", |
502 |
| - " endpoint=endpoint_name,\n", |
| 502 | + "predictor = Predictor(\n", |
| 503 | + " endpoint_name=endpoint_name,\n", |
503 | 504 | " sagemaker_session=sagemaker_session,\n",
|
504 |
| - " serializer=csv_serializer,\n", |
505 |
| - " content_type=CONTENT_TYPE_CSV,\n", |
506 |
| - " accept=CONTENT_TYPE_JSON)\n", |
| 505 | + " serializer=CSVSerializer())\n", |
507 | 506 | "\n",
|
508 | 507 | "print(predictor.predict(payload))"
|
509 | 508 | ]
|
|
544 | 543 | "name": "python",
|
545 | 544 | "nbconvert_exporter": "python",
|
546 | 545 | "pygments_lexer": "ipython3",
|
547 |
| - "version": "3.6.5" |
| 546 | + "version": "3.6.10" |
548 | 547 | }
|
549 | 548 | },
|
550 | 549 | "nbformat": 4,
|
|
0 commit comments