Skip to content

Commit 22db935

Browse files
committed
fix/issue182
1 parent d19f42c commit 22db935

File tree

4 files changed

+5
-5
lines changed

4 files changed

+5
-5
lines changed

document_en/fenwicktree.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Fenwick Tree
22

3-
Given an array of length $N$, it processes the following queries in $O(\log N)$ time.
3+
Given an array of length $n$, it processes the following queries in $O(\log n)$ time.
44

55
- Updating an element
66
- Calculating the sum of the elements of an interval

document_en/mincostflow.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ Let $g$ be a function such that $g(x)$ is the cost of the minimum cost $s-t$ flo
6666
It returns $g$ as the list of the changepoints, that satisfies the followings.
6767

6868
- The first element of the list is $(0, 0)$.
69-
- Both of `.first` and `.second` are strictly increasing.
69+
- `.first` is strictly increasing and `.second` is non-descreasing.
7070
- No three changepoints are on the same line.
7171
- (1) The last element of the list is $(x, g(x))$, where $x$ is the maximum amount of the $s-t$ flow.
7272
- (2) The last element of the list is $(y, g(y))$, where $y = \min(x, \mathrm{flow\\_limit})$.

document_ja/fenwicktree.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
# Fenwick Tree
22

3-
長さ $N$ の配列に対し、
3+
長さ $n$ の配列に対し、
44

55
- 要素の $1$ 点変更
66
- 区間の要素の総和
77

8-
を $O(\log N)$ で求めることが出来るデータ構造です。
8+
を $O(\log n)$ で求めることが出来るデータ構造です。
99

1010
## コンストラクタ
1111

document_ja/mincostflow.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ vector<pair<Cap, Cost>> graph.slope(int s, int t, Cap flow_limit);
6666
返り値に流量とコストの関係の折れ線が入る。全ての $x$ について、流量 $x$ の時の最小コストを $g(x)$ とすると、$(x, g(x))$ は返り値を折れ線として見たものに含まれる。
6767

6868
- 返り値の最初の要素は $(0, 0)$
69-
- 返り値の`.first``.second`は共に狭義単調増加
69+
- 返り値の`.first` は狭義単調増加`.second`は広義単調増加
7070
- 3点が同一線上にあることはない
7171
- (1) 返り値の最後の要素は最大流量 $x$ として $(x, g(x))$
7272
- (2) 返り値の最後の要素は $y = \min(x, \mathrm{flow\\_limit})$ として $(y, g(y))$

0 commit comments

Comments
 (0)