diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 5500da83b2b66..59bd2c347e061 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -1048,6 +1048,7 @@ Spark SQL supports the vast majority of Hive features, such as: * `STRING` * `BINARY` * `TIMESTAMP` + * `DATE` * `ARRAY<>` * `MAP<>` * `STRUCT<>` @@ -1148,6 +1149,7 @@ evaluated by the SQL execution engine. A full list of the functions supported c * Datetime type - `TimestampType`: Represents values comprising values of fields year, month, day, hour, minute, and second. + - `DateType`: Represents values comprising values of fields year, month, day. * Complex types - `ArrayType(elementType, containsNull)`: Represents values comprising a sequence of elements with the type of `elementType`. `containsNull` is used to indicate if @@ -1255,6 +1257,13 @@ import org.apache.spark.sql._ TimestampType + + DateType + java.sql.Date + + DateType + + ArrayType scala.collection.Seq @@ -1381,6 +1390,13 @@ please use factory methods provided in DataType.TimestampType + + DateType + java.sql.Date + + DataType.DateType + + ArrayType java.util.List @@ -1528,6 +1544,13 @@ from pyspark.sql import * TimestampType() + + DateType + datetime.date + + DateType() + + ArrayType list, tuple, or array