Skip to content

Commit f7a41a0

Browse files
luogankunmarmbrus
authored andcommitted
[SPARK-4916][SQL][DOCS]Update SQL programming guide about cache section
`SchemeRDD.cache()` now uses in-memory columnar storage. Author: luogankun <[email protected]> Closes #3759 from luogankun/SPARK-4916 and squashes the following commits: 7b39864 [luogankun] [SPARK-4916]Update SQL programming guide 6018122 [luogankun] Merge branch 'master' of https://github.com/apache/spark into SPARK-4916 0b93785 [luogankun] [SPARK-4916]Update SQL programming guide 99b2336 [luogankun] [SPARK-4916]Update SQL programming guide
1 parent 19a8802 commit f7a41a0

File tree

1 file changed

+1
-4
lines changed

1 file changed

+1
-4
lines changed

docs/sql-programming-guide.md

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -831,13 +831,10 @@ turning on some experimental options.
831831

832832
## Caching Data In Memory
833833

834-
Spark SQL can cache tables using an in-memory columnar format by calling `sqlContext.cacheTable("tableName")`.
834+
Spark SQL can cache tables using an in-memory columnar format by calling `sqlContext.cacheTable("tableName")` or `schemaRDD.cache()`.
835835
Then Spark SQL will scan only required columns and will automatically tune compression to minimize
836836
memory usage and GC pressure. You can call `sqlContext.uncacheTable("tableName")` to remove the table from memory.
837837

838-
Note that if you call `schemaRDD.cache()` rather than `sqlContext.cacheTable(...)`, tables will _not_ be cached using
839-
the in-memory columnar format, and therefore `sqlContext.cacheTable(...)` is strongly recommended for this use case.
840-
841838
Configuration of in-memory caching can be done using the `setConf` method on SQLContext or by running
842839
`SET key=value` commands using SQL.
843840

0 commit comments

Comments
 (0)