@@ -95,10 +95,11 @@ def getItemsCol(self):
95
95
96
96
97
97
class FPGrowthModel (JavaModel , JavaMLWritable , JavaMLReadable ):
98
- """Model fitted by FPGrowth.
99
-
98
+ """
100
99
.. note:: Experimental
101
100
101
+ Model fitted by FPGrowth.
102
+
102
103
.. versionadded:: 2.2.0
103
104
"""
104
105
@property
@@ -125,7 +126,10 @@ def associationRules(self):
125
126
126
127
class FPGrowth (JavaEstimator , HasItemsCol , HasPredictionCol ,
127
128
HasSupport , HasConfidence , JavaMLWritable , JavaMLReadable ):
128
- """A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in
129
+ """
130
+ .. note:: Experimental
131
+
132
+ A parallel FP-growth algorithm to mine frequent itemsets. The algorithm is described in
129
133
Li et al., PFP: Parallel FP-Growth for Query Recommendation [LI2008]_.
130
134
PFP distributes computation in such a way that each worker executes an
131
135
independent group of mining tasks. The FP-Growth algorithm is described in
@@ -134,7 +138,6 @@ class FPGrowth(JavaEstimator, HasItemsCol, HasPredictionCol,
134
138
.. [LI2008] http://dx.doi.org/10.1145/1454008.1454027
135
139
.. [HAN2000] http://dx.doi.org/10.1145/335191.335372
136
140
137
- .. note:: Experimental
138
141
.. note:: null values in the feature column are ignored during fit().
139
142
.. note:: Internally `transform` `collects` and `broadcasts` association rules.
140
143
@@ -181,8 +184,6 @@ class FPGrowth(JavaEstimator, HasItemsCol, HasPredictionCol,
181
184
>>> sorted(fpm.transform(new_data).first().prediction)
182
185
['x', 'y', 'z']
183
186
184
- .. note:: Experimental
185
-
186
187
.. versionadded:: 2.2.0
187
188
"""
188
189
@keyword_only
0 commit comments