Skip to content

Commit 9f1ff89

Browse files
committed
update java api links in mllib-basics
1 parent 7dad18e commit 9f1ff89

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

docs/mllib-basics.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -53,11 +53,11 @@ Scala imports `scala.collection.immutable.Vector` by default, so you have to imp
5353
<div data-lang="java" markdown="1">
5454

5555
The base class of local vectors is
56-
[`Vector`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector), and we provide two
57-
implementations: [`DenseVector`](api/scala/index.html#org.apache.spark.mllib.linalg.DenseVector) and
58-
[`SparseVector`](api/scala/index.html#org.apache.spark.mllib.linalg.SparseVector). We recommend
56+
[`Vector`](api/java/org/apache/spark/mllib/linalg/Vector.html), and we provide two
57+
implementations: [`DenseVector`](api/java/org/apache/spark/mllib/linalg/DenseVector.html) and
58+
[`SparseVector`](api/java/org/apache/spark/mllib/linalg/SparseVector.html). We recommend
5959
using the factory methods implemented in
60-
[`Vectors`](api/scala/index.html#org.apache.spark.mllib.linalg.Vector) to create local vectors.
60+
[`Vectors`](api/java/org/apache/spark/mllib/linalg/Vector.html) to create local vectors.
6161

6262
{% highlight java %}
6363
import org.apache.spark.mllib.linalg.Vector;
@@ -134,7 +134,7 @@ val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)))
134134
<div data-lang="java" markdown="1">
135135

136136
A labeled point is represented by
137-
[`LabeledPoint`](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint).
137+
[`LabeledPoint`](api/java/org/apache/spark/mllib/regression/LabeledPoint.html).
138138

139139
{% highlight java %}
140140
import org.apache.spark.mllib.linalg.Vectors;
@@ -197,7 +197,7 @@ val training: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "mllib/data/sample_
197197
</div>
198198

199199
<div data-lang="java" markdown="1">
200-
[`MLUtils.loadLibSVMFile`](api/scala/index.html#org.apache.spark.mllib.util.MLUtils$) reads training
200+
[`MLUtils.loadLibSVMFile`](api/java/org/apache/spark/mllib/util/MLUtils.html) reads training
201201
examples stored in LIBSVM format.
202202

203203
{% highlight java %}
@@ -244,10 +244,10 @@ val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0))
244244
<div data-lang="java" markdown="1">
245245

246246
The base class of local matrices is
247-
[`Matrix`](api/scala/index.html#org.apache.spark.mllib.linalg.Matrix), and we provide one
248-
implementation: [`DenseMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.DenseMatrix).
247+
[`Matrix`](api/java/org/apache/spark/mllib/linalg/Matrix.html), and we provide one
248+
implementation: [`DenseMatrix`](api/java/org/apache/spark/mllib/linalg/DenseMatrix.html).
249249
Sparse matrix will be added in the next release. We recommend using the factory methods implemented
250-
in [`Matrices`](api/scala/index.html#org.apache.spark.mllib.linalg.Matrices) to create local
250+
in [`Matrices`](api/java/org/apache/spark/mllib/linalg/Matrices.html) to create local
251251
matrices.
252252

253253
{% highlight java %}
@@ -303,7 +303,7 @@ val n = mat.numCols()
303303

304304
<div data-lang="java" markdown="1">
305305

306-
A [`RowMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix) can be
306+
A [`RowMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/RowMatrix.html) can be
307307
created from a `JavaRDD<Vector>` instance. Then we can compute its column summary statistics.
308308

309309
{% highlight java %}
@@ -391,9 +391,9 @@ val rowMat: RowMatrix = mat.toRowMatrix()
391391
<div data-lang="java" markdown="1">
392392

393393
An
394-
[`IndexedRowMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix)
394+
[`IndexedRowMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.html)
395395
can be created from an `JavaRDD<IndexedRow>` instance, where
396-
[`IndexedRow`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.IndexedRow) is a
396+
[`IndexedRow`](api/java/org/apache/spark/mllib/linalg/distributed/IndexedRow.html) is a
397397
wrapper over `(long, Vector)`. An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping
398398
its row indices.
399399

@@ -453,13 +453,13 @@ val indexedRowMatrix = mat.toIndexedRowMatrix()
453453
<div data-lang="java" markdown="1">
454454

455455
A
456-
[`CoordinateMatrix`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.CoordinateMatrix)
456+
[`CoordinateMatrix`](api/java/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.html)
457457
can be created from a `JavaRDD<MatrixEntry>` instance, where
458-
[`MatrixEntry`](api/scala/index.html#org.apache.spark.mllib.linalg.distributed.MatrixEntry) is a
458+
[`MatrixEntry`](api/java/org/apache/spark/mllib/linalg/distributed/MatrixEntry.html) is a
459459
wrapper over `(long, long, double)`. A `CoordinateMatrix` can be converted to a `IndexedRowMatrix`
460460
with sparse rows by calling `toIndexedRowMatrix`.
461461

462-
{% highlight scala %}
462+
{% highlight java %}
463463
import org.apache.spark.api.java.JavaRDD;
464464
import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix;
465465
import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix;

0 commit comments

Comments
 (0)