@@ -144,9 +144,9 @@ class LinearRegressionModelBase(LinearModel):
144
144
--------
145
145
>>> from pyspark.mllib.linalg import SparseVector
146
146
>>> lrmb = LinearRegressionModelBase(np.array([1.0, 2.0]), 0.1)
147
- >>> abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6
147
+ >>> bool( abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6)
148
148
True
149
- >>> abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6
149
+ >>> bool( abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6)
150
150
True
151
151
"""
152
152
@@ -190,23 +190,23 @@ class LinearRegressionModel(LinearRegressionModelBase):
190
190
... ]
191
191
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
192
192
... initialWeights=np.array([1.0]))
193
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
193
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
194
194
True
195
- >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
195
+ >>> bool( abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
196
196
True
197
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
197
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
198
198
True
199
- >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
199
+ >>> bool( abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
200
200
True
201
201
>>> import os, tempfile
202
202
>>> path = tempfile.mkdtemp()
203
203
>>> lrm.save(sc, path)
204
204
>>> sameModel = LinearRegressionModel.load(sc, path)
205
- >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
205
+ >>> bool( abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
206
206
True
207
- >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
207
+ >>> bool( abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
208
208
True
209
- >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
209
+ >>> bool( abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
210
210
True
211
211
>>> from shutil import rmtree
212
212
>>> try:
@@ -221,16 +221,16 @@ class LinearRegressionModel(LinearRegressionModelBase):
221
221
... ]
222
222
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
223
223
... initialWeights=np.array([1.0]))
224
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
224
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
225
225
True
226
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
226
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
227
227
True
228
228
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
229
229
... miniBatchFraction=1.0, initialWeights=np.array([1.0]), regParam=0.1, regType="l2",
230
230
... intercept=True, validateData=True)
231
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
231
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
232
232
True
233
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
233
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
234
234
True
235
235
"""
236
236
@@ -402,23 +402,23 @@ class LassoModel(LinearRegressionModelBase):
402
402
... ]
403
403
>>> lrm = LassoWithSGD.train(
404
404
... sc.parallelize(data), iterations=10, initialWeights=np.array([1.0]))
405
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
405
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
406
406
True
407
- >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
407
+ >>> bool( abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
408
408
True
409
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
409
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
410
410
True
411
- >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
411
+ >>> bool( abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
412
412
True
413
413
>>> import os, tempfile
414
414
>>> path = tempfile.mkdtemp()
415
415
>>> lrm.save(sc, path)
416
416
>>> sameModel = LassoModel.load(sc, path)
417
- >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
417
+ >>> bool( abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
418
418
True
419
- >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
419
+ >>> bool( abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
420
420
True
421
- >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
421
+ >>> bool( abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
422
422
True
423
423
>>> from shutil import rmtree
424
424
>>> try:
@@ -433,16 +433,16 @@ class LassoModel(LinearRegressionModelBase):
433
433
... ]
434
434
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
435
435
... initialWeights=np.array([1.0]))
436
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
436
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
437
437
True
438
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
438
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
439
439
True
440
440
>>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
441
441
... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True,
442
442
... validateData=True)
443
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
443
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
444
444
True
445
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
445
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
446
446
True
447
447
"""
448
448
@@ -580,23 +580,23 @@ class RidgeRegressionModel(LinearRegressionModelBase):
580
580
... ]
581
581
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10,
582
582
... initialWeights=np.array([1.0]))
583
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
583
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
584
584
True
585
- >>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
585
+ >>> bool( abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
586
586
True
587
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
587
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
588
588
True
589
- >>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
589
+ >>> bool( abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
590
590
True
591
591
>>> import os, tempfile
592
592
>>> path = tempfile.mkdtemp()
593
593
>>> lrm.save(sc, path)
594
594
>>> sameModel = RidgeRegressionModel.load(sc, path)
595
- >>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
595
+ >>> bool( abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
596
596
True
597
- >>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
597
+ >>> bool( abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
598
598
True
599
- >>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
599
+ >>> bool( abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
600
600
True
601
601
>>> from shutil import rmtree
602
602
>>> try:
@@ -611,16 +611,16 @@ class RidgeRegressionModel(LinearRegressionModelBase):
611
611
... ]
612
612
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
613
613
... initialWeights=np.array([1.0]))
614
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
614
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
615
615
True
616
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
616
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
617
617
True
618
618
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
619
619
... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True,
620
620
... validateData=True)
621
- >>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
621
+ >>> bool( abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
622
622
True
623
- >>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
623
+ >>> bool( abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
624
624
True
625
625
"""
626
626
@@ -764,19 +764,19 @@ class IsotonicRegressionModel(Saveable, Loader["IsotonicRegressionModel"]):
764
764
--------
765
765
>>> data = [(1, 0, 1), (2, 1, 1), (3, 2, 1), (1, 3, 1), (6, 4, 1), (17, 5, 1), (16, 6, 1)]
766
766
>>> irm = IsotonicRegression.train(sc.parallelize(data))
767
- >>> irm.predict(3)
767
+ >>> float( irm.predict(3) )
768
768
2.0
769
- >>> irm.predict(5)
769
+ >>> float( irm.predict(5) )
770
770
16.5
771
- >>> irm.predict(sc.parallelize([3, 5])).collect()
771
+ >>> list(map(float, irm.predict(sc.parallelize([3, 5])).collect()) )
772
772
[2.0, 16.5]
773
773
>>> import os, tempfile
774
774
>>> path = tempfile.mkdtemp()
775
775
>>> irm.save(sc, path)
776
776
>>> sameModel = IsotonicRegressionModel.load(sc, path)
777
- >>> sameModel.predict(3)
777
+ >>> float( sameModel.predict(3) )
778
778
2.0
779
- >>> sameModel.predict(5)
779
+ >>> float( sameModel.predict(5) )
780
780
16.5
781
781
>>> from shutil import rmtree
782
782
>>> try:
0 commit comments