Skip to content

Commit 53e3775

Browse files
committed
doctest
1 parent 8059a78 commit 53e3775

File tree

1 file changed

+40
-40
lines changed

1 file changed

+40
-40
lines changed

python/pyspark/mllib/regression.py

Lines changed: 40 additions & 40 deletions
Original file line numberDiff line numberDiff line change
@@ -144,9 +144,9 @@ class LinearRegressionModelBase(LinearModel):
144144
--------
145145
>>> from pyspark.mllib.linalg import SparseVector
146146
>>> lrmb = LinearRegressionModelBase(np.array([1.0, 2.0]), 0.1)
147-
>>> abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6
147+
>>> bool(abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6)
148148
True
149-
>>> abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6
149+
>>> bool(abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6)
150150
True
151151
"""
152152

@@ -190,23 +190,23 @@ class LinearRegressionModel(LinearRegressionModelBase):
190190
... ]
191191
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
192192
... initialWeights=np.array([1.0]))
193-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
193+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
194194
True
195-
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
195+
>>> bool(abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
196196
True
197-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
197+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
198198
True
199-
>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
199+
>>> bool(abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
200200
True
201201
>>> import os, tempfile
202202
>>> path = tempfile.mkdtemp()
203203
>>> lrm.save(sc, path)
204204
>>> sameModel = LinearRegressionModel.load(sc, path)
205-
>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
205+
>>> bool(abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
206206
True
207-
>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
207+
>>> bool(abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
208208
True
209-
>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
209+
>>> bool(abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
210210
True
211211
>>> from shutil import rmtree
212212
>>> try:
@@ -221,16 +221,16 @@ class LinearRegressionModel(LinearRegressionModelBase):
221221
... ]
222222
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
223223
... initialWeights=np.array([1.0]))
224-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
224+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
225225
True
226-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
226+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
227227
True
228228
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
229229
... miniBatchFraction=1.0, initialWeights=np.array([1.0]), regParam=0.1, regType="l2",
230230
... intercept=True, validateData=True)
231-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
231+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
232232
True
233-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
233+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
234234
True
235235
"""
236236

@@ -402,23 +402,23 @@ class LassoModel(LinearRegressionModelBase):
402402
... ]
403403
>>> lrm = LassoWithSGD.train(
404404
... sc.parallelize(data), iterations=10, initialWeights=np.array([1.0]))
405-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
405+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
406406
True
407-
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
407+
>>> bool(abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
408408
True
409-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
409+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
410410
True
411-
>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
411+
>>> bool(abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
412412
True
413413
>>> import os, tempfile
414414
>>> path = tempfile.mkdtemp()
415415
>>> lrm.save(sc, path)
416416
>>> sameModel = LassoModel.load(sc, path)
417-
>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
417+
>>> bool(abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
418418
True
419-
>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
419+
>>> bool(abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
420420
True
421-
>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
421+
>>> bool(abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
422422
True
423423
>>> from shutil import rmtree
424424
>>> try:
@@ -433,16 +433,16 @@ class LassoModel(LinearRegressionModelBase):
433433
... ]
434434
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
435435
... initialWeights=np.array([1.0]))
436-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
436+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
437437
True
438-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
438+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
439439
True
440440
>>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
441441
... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True,
442442
... validateData=True)
443-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
443+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
444444
True
445-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
445+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
446446
True
447447
"""
448448

@@ -580,23 +580,23 @@ class RidgeRegressionModel(LinearRegressionModelBase):
580580
... ]
581581
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10,
582582
... initialWeights=np.array([1.0]))
583-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
583+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
584584
True
585-
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
585+
>>> bool(abs(lrm.predict(np.array([1.0])) - 1) < 0.5)
586586
True
587-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
587+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
588588
True
589-
>>> abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5
589+
>>> bool(abs(lrm.predict(sc.parallelize([[1.0]])).collect()[0] - 1) < 0.5)
590590
True
591591
>>> import os, tempfile
592592
>>> path = tempfile.mkdtemp()
593593
>>> lrm.save(sc, path)
594594
>>> sameModel = RidgeRegressionModel.load(sc, path)
595-
>>> abs(sameModel.predict(np.array([0.0])) - 0) < 0.5
595+
>>> bool(abs(sameModel.predict(np.array([0.0])) - 0) < 0.5)
596596
True
597-
>>> abs(sameModel.predict(np.array([1.0])) - 1) < 0.5
597+
>>> bool(abs(sameModel.predict(np.array([1.0])) - 1) < 0.5)
598598
True
599-
>>> abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
599+
>>> bool(abs(sameModel.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
600600
True
601601
>>> from shutil import rmtree
602602
>>> try:
@@ -611,16 +611,16 @@ class RidgeRegressionModel(LinearRegressionModelBase):
611611
... ]
612612
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
613613
... initialWeights=np.array([1.0]))
614-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
614+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
615615
True
616-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
616+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
617617
True
618618
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10, step=1.0,
619619
... regParam=0.01, miniBatchFraction=1.0, initialWeights=np.array([1.0]), intercept=True,
620620
... validateData=True)
621-
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
621+
>>> bool(abs(lrm.predict(np.array([0.0])) - 0) < 0.5)
622622
True
623-
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
623+
>>> bool(abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5)
624624
True
625625
"""
626626

@@ -764,19 +764,19 @@ class IsotonicRegressionModel(Saveable, Loader["IsotonicRegressionModel"]):
764764
--------
765765
>>> data = [(1, 0, 1), (2, 1, 1), (3, 2, 1), (1, 3, 1), (6, 4, 1), (17, 5, 1), (16, 6, 1)]
766766
>>> irm = IsotonicRegression.train(sc.parallelize(data))
767-
>>> irm.predict(3)
767+
>>> float(irm.predict(3))
768768
2.0
769-
>>> irm.predict(5)
769+
>>> float(irm.predict(5))
770770
16.5
771-
>>> irm.predict(sc.parallelize([3, 5])).collect()
771+
>>> list(map(float, irm.predict(sc.parallelize([3, 5])).collect()))
772772
[2.0, 16.5]
773773
>>> import os, tempfile
774774
>>> path = tempfile.mkdtemp()
775775
>>> irm.save(sc, path)
776776
>>> sameModel = IsotonicRegressionModel.load(sc, path)
777-
>>> sameModel.predict(3)
777+
>>> float(sameModel.predict(3))
778778
2.0
779-
>>> sameModel.predict(5)
779+
>>> float(sameModel.predict(5))
780780
16.5
781781
>>> from shutil import rmtree
782782
>>> try:

0 commit comments

Comments
 (0)