You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
and some minor changes in ScalaDoc.
Author: Xiangrui Meng <[email protected]>
Closes#3601 from mengxr/SPARK-4575-fix and squashes the following commits:
c559768 [Xiangrui Meng] minor code update
ce94da8 [Xiangrui Meng] Java Bean -> JavaBean
0b5c182 [Xiangrui Meng] fix links in ml-guide
(cherry picked from commit 7e758d7)
Signed-off-by: Xiangrui Meng <[email protected]>
Copy file name to clipboardExpand all lines: docs/ml-guide.md
+4-4Lines changed: 4 additions & 4 deletions
Original file line number
Diff line number
Diff line change
@@ -31,7 +31,7 @@ E.g., a learning algorithm is an `Estimator` which trains on a dataset and produ
31
31
32
32
***[`Pipeline`](ml-guide.html#pipeline)**: A `Pipeline` chains multiple `Transformer`s and `Estimator`s together to specify an ML workflow.
33
33
34
-
***[`Param`](ml-guide.html#param)**: All `Transformer`s and `Estimator`s now share a common API for specifying parameters.
34
+
***[`Param`](ml-guide.html#parameters)**: All `Transformer`s and `Estimator`s now share a common API for specifying parameters.
35
35
36
36
## ML Dataset
37
37
@@ -134,7 +134,7 @@ Each stage's `transform()` method updates the dataset and passes it to the next
134
134
Spark ML `Estimator`s and `Transformer`s use a uniform API for specifying parameters.
135
135
136
136
A [`Param`](api/scala/index.html#org.apache.spark.ml.param.Param) is a named parameter with self-contained documentation.
137
-
A [`ParamMap`](api/scala/index.html#org.apache.spark.ml.param.ParamMap)] is a set of (parameter, value) pairs.
137
+
A [`ParamMap`](api/scala/index.html#org.apache.spark.ml.param.ParamMap) is a set of (parameter, value) pairs.
138
138
139
139
There are two main ways to pass parameters to an algorithm:
140
140
@@ -148,7 +148,7 @@ This is useful if there are two algorithms with the `maxIter` parameter in a `Pi
148
148
# Code Examples
149
149
150
150
This section gives code examples illustrating the functionality discussed above.
151
-
There is not yet documentation for specific algorithms in Spark ML. For more info, please refer to the [API Documentation](api/scala/index.html). Spark ML algorithms are currently wrappers for MLlib algorithms, and the [MLlib programming guide](mllib-guide.html) has details on specific algorithms.
151
+
There is not yet documentation for specific algorithms in Spark ML. For more info, please refer to the [API Documentation](api/scala/index.html#org.apache.spark.ml.package). Spark ML algorithms are currently wrappers for MLlib algorithms, and the [MLlib programming guide](mllib-guide.html) has details on specific algorithms.
152
152
153
153
## Example: Estimator, Transformer, and Param
154
154
@@ -492,7 +492,7 @@ The `ParamMap` which produces the best evaluation metric (averaged over the `$k$
492
492
`CrossValidator` finally fits the `Estimator` using the best `ParamMap` and the entire dataset.
493
493
494
494
The following example demonstrates using `CrossValidator` to select from a grid of parameters.
495
-
To help construct the parameter grid, we use the [`ParamGridBuilder`](api/scala/index.html#org.apache.spark.ml.tuning.ParamGridGuilder) utility.
495
+
To help construct the parameter grid, we use the [`ParamGridBuilder`](api/scala/index.html#org.apache.spark.ml.tuning.ParamGridBuilder) utility.
496
496
497
497
Note that cross-validation over a grid of parameters is expensive.
498
498
E.g., in the example below, the parameter grid has 3 values for `hashingTF.numFeatures` and 2 values for `lr.regParam`, and `CrossValidator` uses 2 folds. This multiplies out to `$(3 \times 2) \times 2 = 12$` different models being trained.
0 commit comments