File tree Expand file tree Collapse file tree 2 files changed +8
-3
lines changed Expand file tree Collapse file tree 2 files changed +8
-3
lines changed Original file line number Diff line number Diff line change @@ -2632,7 +2632,7 @@ Other minor changes
2632
2632
init-tail : init ∘ tail ≗ tail ∘ init
2633
2633
2634
2634
++-assoc : cast eq ((xs ++ ys) ++ zs) ≡ xs ++ (ys ++ zs)
2635
- ++-identityʳ : cast eq xs ≡ xs ++ []
2635
+ ++-identityʳ : cast eq ( xs ++ []) ≡ xs
2636
2636
init-reverse : init ∘ reverse ≗ reverse ∘ tail
2637
2637
last-reverse : last ∘ reverse ≗ head
2638
2638
reverse-++ : cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
Original file line number Diff line number Diff line change @@ -493,7 +493,7 @@ map-⊛ f g (x ∷ xs) = cong (f x (g x) ∷_) (map-⊛ f g xs)
493
493
++-assoc eq [] ys zs = cast-is-id eq (ys ++ zs)
494
494
++-assoc eq (x ∷ xs) ys zs = cong (x ∷_) (++-assoc (cong pred eq) xs ys zs)
495
495
496
- ++-identityʳ : ∀ .(eq : m ≡ m + zero) (xs : Vec A m ) → cast eq xs ≡ xs ++ []
496
+ ++-identityʳ : ∀ .(eq : n + zero ≡ n ) (xs : Vec A n ) → cast eq ( xs ++ []) ≡ xs
497
497
++-identityʳ eq [] = refl
498
498
++-identityʳ eq (x ∷ xs) = cong (x ∷_) (++-identityʳ (cong pred eq) xs)
499
499
@@ -965,7 +965,12 @@ map-reverse f (x ∷ xs) = begin
965
965
966
966
reverse-++ : ∀ .(eq : m + n ≡ n + m) (xs : Vec A m) (ys : Vec A n) →
967
967
cast eq (reverse (xs ++ ys)) ≡ reverse ys ++ reverse xs
968
- reverse-++ {m = zero} {n = n} eq [] ys = ++-identityʳ (+-comm zero n) (reverse ys)
968
+ reverse-++ {m = zero} {n = n} eq [] ys = begin
969
+ cast _ (reverse ys) ≡˘⟨ cong (cast eq) (++-identityʳ (sym eq) (reverse ys)) ⟩
970
+ cast _ (cast _ (reverse ys ++ [])) ≡⟨ cast-trans (sym eq) eq (reverse ys ++ []) ⟩
971
+ cast _ (reverse ys ++ []) ≡⟨ cast-is-id (trans (sym eq) eq) (reverse ys ++ []) ⟩
972
+ reverse ys ++ [] ≡⟨⟩
973
+ reverse ys ++ reverse [] ∎
969
974
reverse-++ {m = suc m} {n = n} eq (x ∷ xs) ys = begin
970
975
cast eq (reverse (x ∷ xs ++ ys)) ≡⟨ cong (cast eq) (reverse-∷ x (xs ++ ys)) ⟩
971
976
cast eq (reverse (xs ++ ys) ∷ʳ x) ≡˘⟨ cast-trans eq₂ eq₁ (reverse (xs ++ ys) ∷ʳ x) ⟩
You can’t perform that action at this time.
0 commit comments