@@ -33,13 +33,12 @@ u(u_0,p,t,W_t)=u_0\exp((α-\frac{β^2}{2})t+βW_t)
33
33
34
34
"""
35
35
prob_sde_linear = SDEProblem (SDEFunction (f_linear, σ_linear,
36
- analytic = linear_analytic), σ_linear, 1 / 2 ,
36
+ analytic = linear_analytic), 1 / 2 ,
37
37
(0.0 , 1.0 ))
38
38
39
39
linear_analytic_strat (u0, p, t, W) = @. (u0* exp (1.01 t + 0.87 W))
40
40
prob_sde_linear_stratonovich = SDEProblem (SDEFunction (f_linear, σ_linear,
41
- analytic = linear_analytic_strat),
42
- σ_linear, 1 / 2 , (0.0 , 1.0 ))
41
+ analytic = linear_analytic_strat), 1 / 2 , (0.0 , 1.0 ))
43
42
f_linear_iip (du, u, p, t) = @. (du= 1.01 * u)
44
43
σ_linear_iip (du, u, p, t) = @. (du= 0.87 * u)
45
44
@doc doc"""
@@ -55,11 +54,9 @@ u(u_0,p,t,W_t)=u_0\exp((α-\frac{β^2}{2})t+βW_t)
55
54
```
56
55
"""
57
56
prob_sde_2Dlinear = SDEProblem (SDEFunction (f_linear_iip, σ_linear_iip,
58
- analytic = linear_analytic),
59
- σ_linear_iip, ones (4 , 2 ) / 2 , (0.0 , 1.0 ))
57
+ analytic = linear_analytic), ones (4 , 2 ) / 2 , (0.0 , 1.0 ))
60
58
prob_sde_2Dlinear_stratonovich = SDEProblem (SDEFunction (f_linear_iip, σ_linear_iip,
61
- analytic = linear_analytic_strat),
62
- σ_linear_iip, ones (4 , 2 ) / 2 , (0.0 , 1.0 ))
59
+ analytic = linear_analytic_strat), ones (4 , 2 ) / 2 , (0.0 , 1.0 ))
63
60
64
61
f_cubic (u, p, t) = - 0.25 * u * (1 - u^ 2 )
65
62
σ_cubic (u, p, t) = 0.5 * (1 - u^ 2 )
@@ -76,7 +73,7 @@ and initial condition ``u_0=\frac{1}{2}``, with solution
76
73
u(u0,p,t,W_t)=\f rac{(1+u_0)\e xp(W_t)+u)0-1}{(1+u_0)\e xp(W_t)+1-u_0}
77
74
```
78
75
"""
79
- prob_sde_cubic = SDEProblem (ff_cubic, σ_cubic, 1 / 2 , (0.0 , 1.0 ))
76
+ prob_sde_cubic = SDEProblem (ff_cubic, 1 / 2 , (0.0 , 1.0 ))
80
77
81
78
f_wave (u, p, t) = @. - 0.01 * sin (u) * cos (u)^ 3
82
79
σ_wave (u, p, t) = @. 0.1 * cos (u)^ 2
@@ -93,7 +90,7 @@ and initial condition ``u_0=1`` with solution
93
90
u(u_0,p,t,W_t)=\a rctan(\f rac{W_t}{10} + \t an(u_0))
94
91
```
95
92
"""
96
- prob_sde_wave = SDEProblem (ff_wave, σ_wave, 1.0 , (0.0 , 1.0 ))
93
+ prob_sde_wave = SDEProblem (ff_wave, 1.0 , (0.0 , 1.0 ))
97
94
98
95
f_additive (u, p, t) = @. p[2 ] / sqrt (1 + t) - u / (2 * (1 + t))
99
96
σ_additive (u, p, t) = @. p[1 ] * p[2 ] / sqrt (1 + t)
@@ -113,7 +110,7 @@ and initial condition ``u_0=1`` with ``α=0.1`` and ``β=0.05``, with solution
113
110
u(u_0,p,t,W_t)=\f rac{u_0}{\s qrt{1+t}} + \f rac{β(t+αW_t)}{\s qrt{1+t}}
114
111
```
115
112
"""
116
- prob_sde_additive = SDEProblem (ff_additive, σ_additive, 1.0 , (0.0 , 1.0 ), p)
113
+ prob_sde_additive = SDEProblem (ff_additive, 1.0 , (0.0 , 1.0 ), p)
117
114
118
115
f_additive_iip (du, u, p, t) = @. (du= p[2 ] / sqrt (1 + t) - u / (2 * (1 + t)))
119
116
σ_additive_iip (du, u, p, t) = @. (du= p[1 ] * p[2 ] / sqrt (1 + t))
@@ -123,7 +120,7 @@ p = ([0.1; 0.1; 0.1; 0.1], [0.5; 0.25; 0.125; 0.1115])
123
120
A multiple dimension extension of `additiveSDEExample`
124
121
125
122
"""
126
- prob_sde_additivesystem = SDEProblem (ff_additive_iip, σ_additive_iip, [1.0 ; 1.0 ; 1.0 ; 1.0 ],
123
+ prob_sde_additivesystem = SDEProblem (ff_additive_iip, [1.0 ; 1.0 ; 1.0 ; 1.0 ],
127
124
(0.0 , 1.0 ), p)
128
125
129
126
function f_lorenz (du, u, p, t)
@@ -157,7 +154,7 @@ ff_nltest = SDEFunction(f_nltest, σ_nltest, analytic = analytic_nltest)
157
154
Runge–Kutta methods for numerical solution of stochastic differential equations
158
155
Tocino and Ardanuy
159
156
"""
160
- prob_sde_nltest = SDEProblem (ff_nltest, σ_nltest, 1.0 , (0.0 , 10.0 ))
157
+ prob_sde_nltest = SDEProblem (ff_nltest, 1.0 , (0.0 , 10.0 ))
161
158
162
159
@doc doc"""
163
160
oval2ModelExample(;largeFluctuations=false,useBigs=false,noiseLevel=1)
@@ -404,7 +401,7 @@ Stiffness of Euler is determined by α+β²<1
404
401
Higher α or β is stiff, with α being deterministic stiffness and
405
402
β being noise stiffness (and grows by square).
406
403
"""
407
- prob_sde_stiffquadito = SDEProblem (ff_stiff_quad_ito, stiff_quad_g, 0.5 , (0.0 , 3.0 ),
404
+ prob_sde_stiffquadito = SDEProblem (ff_stiff_quad_ito, 0.5 , (0.0 , 3.0 ),
408
405
(1.0 , 1.0 ))
409
406
410
407
@doc doc"""
@@ -424,7 +421,7 @@ Stiffness of Euler is determined by α+β²<1
424
421
Higher α or β is stiff, with α being deterministic stiffness and
425
422
β being noise stiffness (and grows by square).
426
423
"""
427
- prob_sde_stiffquadstrat = SDEProblem (ff_stiff_quad_strat, stiff_quad_g, 0.5 , (0.0 , 3.0 ),
424
+ prob_sde_stiffquadstrat = SDEProblem (ff_stiff_quad_strat, 0.5 , (0.0 , 3.0 ),
428
425
(1.0 , 1.0 ))
429
426
430
427
@doc doc"""
0 commit comments