Skip to content

Commit f7befce

Browse files
authored
Merge pull request #1138 from JuliaAI/dev
For a 0.20.7 release
2 parents 5d600f0 + 8026e8a commit f7befce

File tree

9 files changed

+60
-24
lines changed

9 files changed

+60
-24
lines changed

Project.toml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
name = "MLJ"
22
uuid = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7"
33
authors = ["Anthony D. Blaom <[email protected]>"]
4-
version = "0.20.6"
4+
version = "0.20.7"
55

66
[deps]
77
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
@@ -32,9 +32,9 @@ Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
3232
CategoricalArrays = "0.8,0.9, 0.10"
3333
ComputationalResources = "0.3"
3434
Distributions = "0.21,0.22,0.23, 0.24, 0.25"
35-
FeatureSelection = "0.1.1"
35+
FeatureSelection = "0.2"
3636
MLJBalancing = "0.1"
37-
MLJBase = "1"
37+
MLJBase = "1.5"
3838
MLJEnsembles = "0.4"
3939
MLJFlow = "0.5"
4040
MLJIteration = "0.6"

docs/ModelDescriptors.toml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -154,6 +154,7 @@ MultitargetNeuralNetworkRegressor_BetaML = ["regression", "neural_networks"]
154154
MultitargetNeuralNetworkRegressor_MLJFlux = ["regression", "iterative_models", "neural_networks"]
155155
MultitargetRidgeRegressor_MultivariateStats = ["regression"]
156156
MultitargetSRRegressor_SymbolicRegression = ["regression"]
157+
NeuralNetworkBinaryClassifier_MLJFlux = ["classification", "neural_networks"]
157158
NeuralNetworkClassifier_BetaML = ["classification", "neural_networks"]
158159
NeuralNetworkClassifier_MLJFlux = ["classification", "iterative_models", "neural_networks"]
159160
NeuralNetworkRegressor_BetaML = ["regression", "neural_networks"]

docs/make.jl

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,10 +67,11 @@ pages = [
6767
"Generating Synthetic Data" => "generating_synthetic_data.md",
6868
"OpenML Integration" => "openml_integration.md",
6969
],
70-
"Model Basics" => [
70+
"Models" => [
7171
"Model Search" => "model_search.md",
7272
"Loading Model Code" => "loading_model_code.md",
7373
"Transformers and Other Unsupervised models" => "transformers.md",
74+
"Feature Selection" => "feature_selection.md",
7475
"List of Supported Models" => "list_of_supported_models.md",
7576
],
7677
"Meta-algorithms" => [

docs/src/feature_selection.md

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
# Feature Selection
2+
3+
For more on feature selection tools, refer to the [FeatureSelection.jl](https://juliaai.github.io/FeatureSelection.jl/dev/) documentation.
4+
5+
- [`FeatureSelector`](@ref)
6+
- [`RecursiveFeatureElimination`](@ref)
7+
8+
## Reference
9+
10+
```@docs
11+
FeatureSelector
12+
RecursiveFeatureElimination
13+
```

docs/src/model_search.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,10 @@
11
# [Model Search](@id model_search)
22

3-
MLJ has a model registry, allowing the user to search models and their
4-
properties, without loading all the packages containing model code. In
5-
turn, this allows one to efficiently find all models solving a given
6-
machine learning task. The task itself is specified with the help of
7-
the `matching` method, and the search executed with the `models`
8-
methods, as detailed below.
3+
In addition to perusing the [Model Browser](@ref), one can programatically search MLJ's
4+
Model Registry, without actually loading all the packages providing model code. This
5+
allows you to efficiently find all models solving a given machine learning task. The task
6+
itself is specified with the help of the `matching` method, and the search executed with
7+
the `models` methods, as detailed below.
98

109
For commonly encountered problems with model search, see also
1110
[Preparing Data](@ref).

docs/src/transformers.md

Lines changed: 24 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -24,18 +24,16 @@ that learn a probability distribution](@ref) for an example.
2424

2525
## Built-in transformers
2626

27-
```@docs
28-
MLJModels.Standardizer
29-
MLJModels.OneHotEncoder
30-
MLJModels.ContinuousEncoder
31-
MLJModels.FillImputer
32-
MLJModels.UnivariateFillImputer
33-
FeatureSelection.FeatureSelector
34-
MLJModels.UnivariateBoxCoxTransformer
35-
MLJModels.UnivariateDiscretizer
36-
MLJModels.UnivariateTimeTypeToContinuous
37-
```
38-
27+
- [`Standardizer`](@ref)
28+
- [`OneHotEncoder`](@ref)
29+
- [`ContinuousEncoder`](@ref)
30+
- [`FillImputer`](@ref)
31+
- [`UnivariateFillImputer`](@ref)
32+
- [`UnivariateBoxCoxTransformer`](@ref)
33+
- [`InteractionTransformer`](@ref)
34+
- [`UnivariateDiscretizer`](@ref)
35+
- [`UnivariateTimeTypeToContinuous`](@ref)
36+
- [`FeatureSelector`](@ref).
3937

4038
## Static transformers
4139

@@ -231,3 +229,17 @@ compare[51:58]
231229
```@example predtrans
232230
compare[101:108]
233231
```
232+
233+
## Reference
234+
235+
```@docs
236+
MLJModels.Standardizer
237+
MLJModels.OneHotEncoder
238+
MLJModels.ContinuousEncoder
239+
MLJModels.FillImputer
240+
MLJModels.UnivariateFillImputer
241+
MLJModels.UnivariateBoxCoxTransformer
242+
MLJModels.InteractionTransformer
243+
MLJModels.UnivariateDiscretizer
244+
MLJModels.UnivariateTimeTypeToContinuous
245+
```

docs/src/working_with_categorical_data.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -345,3 +345,9 @@ d_vec = UnivariateFinite(["no", "yes"], yes_probs, augment=true, pool=v)
345345
```
346346

347347
For more options, see [`UnivariateFinite`](@ref).
348+
349+
## Reference
350+
351+
```@docs
352+
UnivariateFinite
353+
```

src/MLJ.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -146,7 +146,7 @@ export nrows, color_off, color_on,
146146
@pipeline, Stack, Pipeline, TransformedTargetModel,
147147
ResamplingStrategy, Holdout, CV, TimeSeriesCV,
148148
StratifiedCV, evaluate!, Resampler, iterator, PerformanceEvaluation,
149-
default_resource, pretty,
149+
default_resource, default_logger, pretty,
150150
make_blobs, make_moons, make_circles, make_regression,
151151
fit_only!, return!, int, decoder,
152152
default_scitype_check_level,

test/integration.jl

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -155,7 +155,11 @@ PATHOLOGIES = filter(MODELS) do model
155155
# too slow to train!
156156
(model.name == "LOCIDetector" && model.package_name == "OutlierDetectionPython") ||
157157
# TO REDUCE TESTING TIME
158-
model.package_name == "MLJScikitLearnInterface"
158+
model.package_name == "MLJScikitLearnInterface" ||
159+
# can be removed after resolution of
160+
# https://github.com/JuliaAI/FeatureSelection.jl/issues/15
161+
# and a Model Registry update
162+
model.name == "RecursiveFeatureElimination"
159163
end
160164

161165
WITHOUT_DATASETS = vcat(WITHOUT_DATASETS, PATHOLOGIES)

0 commit comments

Comments
 (0)