Skip to content

Commit 691eed4

Browse files
authored
Fix MLJTuning.jl links
The links to MLJTuning.jl were pointing to github.com/FluxML/model-zoo
1 parent 6e9f223 commit 691eed4

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

docs/src/tuning_models.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -6,13 +6,13 @@ advanced keyword options.
66

77
tuning strategy | notes |package to import | package providing the core algorithm
88
----------------|-------|------------------|----------------------------------
9-
[`Grid`](@ref)`(goal=nothing, resolution=10)` | shuffled by default; `goal` is upper bound for number of grid points | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
10-
[`RandomSearch`](@ref)`(rng=GLOBAL_RNG)` | with customizable priors |MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
9+
[`Grid`](@ref)`(goal=nothing, resolution=10)` | shuffled by default; `goal` is upper bound for number of grid points | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
10+
[`RandomSearch`](@ref)`(rng=GLOBAL_RNG)` | with customizable priors |MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
1111
[`LatinHypercube`](@ref)`(rng=GLOBAL_RNG)` | with discrete parameter support | MLJ.jl or MLJTuning.jl | [LatinHypercubeSampling](https://github.com/MrUrq/LatinHypercubeSampling.jl)
1212
`MLJTreeParzenTuning()` | See this [example](https://github.com/IQVIA-ML/TreeParzen.jl/blob/master/docs/examples/simple_mlj_demo/simple_mlj_demo.md) for usage | TreeParzen.jl | [TreeParzen.jl](https://github.com/IQVIA-ML/TreeParzen.jl) (port to Julia of [hyperopt](http://hyperopt.github.io/hyperopt/))
1313
`ParticleSwarm(n_particles=3, rng=GLOBAL_RNG)` | Standard Kennedy-Eberhart algorithm, plus discrete parameter support | MLJParticleSwarmOptimization.jl | [MLJParticleSwarmOptimization.jl](https://github.com/JuliaAI/MLJParticleSwarmOptimization.jl/)
1414
`AdaptiveParticleSwarm(n_particles=3, rng=GLOBAL_RNG)` | Zhan et al. variant with automated swarm coefficient updates, plus discrete parameter support | MLJParticleSwarmOptimization.jl | [MLJParticleSwarmOptimization.jl](https://github.com/JuliaAI/MLJParticleSwarmOptimization.jl/)
15-
`Explicit()` | For an [explicit list](@ref explicit) of models of varying type | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
15+
`Explicit()` | For an [explicit list](@ref explicit) of models of varying type | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
1616

1717
Below we illustrate hyperparameter optimization using the
1818
[`Grid`](@ref), [`RandomSearch`](@ref), [`LatinHypercube`](@ref) and

0 commit comments

Comments
 (0)