You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[`Grid`](@ref)`(goal=nothing, resolution=10)` | shuffled by default; `goal` is upper bound for number of grid points | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
10
-
[`RandomSearch`](@ref)`(rng=GLOBAL_RNG)` | with customizable priors |MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
9
+
[`Grid`](@ref)`(goal=nothing, resolution=10)` | shuffled by default; `goal` is upper bound for number of grid points | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
10
+
[`RandomSearch`](@ref)`(rng=GLOBAL_RNG)` | with customizable priors |MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
11
11
[`LatinHypercube`](@ref)`(rng=GLOBAL_RNG)` | with discrete parameter support | MLJ.jl or MLJTuning.jl | [LatinHypercubeSampling](https://github.com/MrUrq/LatinHypercubeSampling.jl)
12
12
`MLJTreeParzenTuning()` | See this [example](https://github.com/IQVIA-ML/TreeParzen.jl/blob/master/docs/examples/simple_mlj_demo/simple_mlj_demo.md) for usage | TreeParzen.jl | [TreeParzen.jl](https://github.com/IQVIA-ML/TreeParzen.jl) (port to Julia of [hyperopt](http://hyperopt.github.io/hyperopt/))
13
13
`ParticleSwarm(n_particles=3, rng=GLOBAL_RNG)` | Standard Kennedy-Eberhart algorithm, plus discrete parameter support | MLJParticleSwarmOptimization.jl | [MLJParticleSwarmOptimization.jl](https://github.com/JuliaAI/MLJParticleSwarmOptimization.jl/)
14
14
`AdaptiveParticleSwarm(n_particles=3, rng=GLOBAL_RNG)` | Zhan et al. variant with automated swarm coefficient updates, plus discrete parameter support | MLJParticleSwarmOptimization.jl | [MLJParticleSwarmOptimization.jl](https://github.com/JuliaAI/MLJParticleSwarmOptimization.jl/)
15
-
`Explicit()` | For an [explicit list](@ref explicit) of models of varying type | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/FluxML/model-zoo)
15
+
`Explicit()` | For an [explicit list](@ref explicit) of models of varying type | MLJ.jl or MLJTuning.jl | [MLJTuning.jl](https://github.com/JuliaAI/MLJTuning.jl)
16
16
17
17
Below we illustrate hyperparameter optimization using the
18
18
[`Grid`](@ref), [`RandomSearch`](@ref), [`LatinHypercube`](@ref) and
0 commit comments