@@ -669,12 +669,14 @@ impl MonitorsAPI {
669
669
///
670
670
/// ##### Error Tracking Alert Query
671
671
///
672
- /// Example(RUM) : `error-tracking-rum (query).rollup(rollup_method[, measure]).last(time_window) operator #`
673
- /// Example(APM Traces) : `error-tracking-traces (query).rollup(rollup_method[, measure]).last(time_window) operator #`
672
+ /// "New issue" example : `error-tracking(query).source(issue_source).new(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
673
+ /// "High impact issue" example : `error-tracking(query).source(issue_source).impact(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
674
674
///
675
675
/// - `query` The search query - following the [Log search syntax](<https://docs.datadoghq.com/logs/search_syntax/>).
676
- /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality`.
676
+ /// - `issue_source` The issue source - supports `all`, `browser`, `mobile` and `backend` and defaults to `all` if omitted.
677
+ /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality` and defaults to `count` if omitted.
677
678
/// - `measure` For `avg` and cardinality `rollup_method` - specify the measure or the facet name you want to use.
679
+ /// - `group by` Comma-separated list of attributes to group by - should contain at least `issue.id`.
678
680
/// - `time_window` #m (between 1 and 2880), #h (between 1 and 48).
679
681
/// - `operator` `<`, `<=`, `>`, `>=`, `==`, or `!=`.
680
682
/// - `#` an integer or decimal number used to set the threshold.
@@ -879,12 +881,14 @@ impl MonitorsAPI {
879
881
///
880
882
/// ##### Error Tracking Alert Query
881
883
///
882
- /// Example(RUM) : `error-tracking-rum (query).rollup(rollup_method[, measure]).last(time_window) operator #`
883
- /// Example(APM Traces) : `error-tracking-traces (query).rollup(rollup_method[, measure]).last(time_window) operator #`
884
+ /// "New issue" example : `error-tracking(query).source(issue_source).new(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
885
+ /// "High impact issue" example : `error-tracking(query).source(issue_source).impact(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
884
886
///
885
887
/// - `query` The search query - following the [Log search syntax](<https://docs.datadoghq.com/logs/search_syntax/>).
886
- /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality`.
888
+ /// - `issue_source` The issue source - supports `all`, `browser`, `mobile` and `backend` and defaults to `all` if omitted.
889
+ /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality` and defaults to `count` if omitted.
887
890
/// - `measure` For `avg` and cardinality `rollup_method` - specify the measure or the facet name you want to use.
891
+ /// - `group by` Comma-separated list of attributes to group by - should contain at least `issue.id`.
888
892
/// - `time_window` #m (between 1 and 2880), #h (between 1 and 48).
889
893
/// - `operator` `<`, `<=`, `>`, `>=`, `==`, or `!=`.
890
894
/// - `#` an integer or decimal number used to set the threshold.
0 commit comments