|
| 1 | +import subprocess |
| 2 | +import sys |
| 3 | +import os |
| 4 | +import sqlite3 |
| 5 | +from collections import defaultdict |
| 6 | + |
| 7 | +NS_TIME = 1e9 |
| 8 | + |
| 9 | +def register_command(subparsers): |
| 10 | + parser = subparsers.add_parser( |
| 11 | + "gpu-usage-estimation", |
| 12 | + help="Estimation of gpu operation time. We recommend running your training cycle for 100 iterations" |
| 13 | + ) |
| 14 | + |
| 15 | + parser.add_argument( |
| 16 | + "path_to_file", |
| 17 | + help="path of the file you want to analyze" |
| 18 | + ) |
| 19 | + parser.set_defaults(func=main) |
| 20 | + |
| 21 | +def joinIntervals(arr): |
| 22 | + # arr = tuple(type,start,end,streamid) |
| 23 | + eventDict = defaultdict(int) |
| 24 | + filteredArr = [] |
| 25 | + prevRecord = list(arr[0]) |
| 26 | + for i in range(1,len(arr)): |
| 27 | + newRecord = list(arr[i]) |
| 28 | + if prevRecord[1] <= newRecord[1] <= prevRecord[2]: |
| 29 | + prevRecord[1] = min(prevRecord[1], newRecord[1]) |
| 30 | + prevRecord[2] = max(prevRecord[2], newRecord[2]) |
| 31 | + else: |
| 32 | + filteredArr.append(prevRecord) |
| 33 | + prevRecord = newRecord |
| 34 | + filteredArr.append(prevRecord) # append the last record |
| 35 | + for item in filteredArr: |
| 36 | + eventDict[item[0]] += (item[2]-item[1]) |
| 37 | + return eventDict |
| 38 | + |
| 39 | +def sql_command_execution(db_path): |
| 40 | + connection = sqlite3.connect(db_path, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) |
| 41 | + cursor = connection.cursor() |
| 42 | + |
| 43 | + try: |
| 44 | + timeline_data = cursor.execute(""" |
| 45 | + SELECT "memOps" as name, start,end, streamId |
| 46 | + FROM CUPTI_ACTIVITY_KIND_MEMCPY |
| 47 | + UNION ALL |
| 48 | + SELECT "kernelOps" as name, start, end, streamId |
| 49 | + FROM CUPTI_ACTIVITY_KIND_KERNEL |
| 50 | + UNION ALL |
| 51 | + SELECT "memOps" as name, start, end, streamId |
| 52 | + FROM CUPTI_ACTIVITY_KIND_MEMSET |
| 53 | + ORDER by start ASC; |
| 54 | + """).fetchall() |
| 55 | + profiling_duration = cursor.execute(""" |
| 56 | + SELECT duration FROM ANALYSIS_DETAILS; |
| 57 | + """).fetchone()[0] |
| 58 | + cupti_api_duration = cursor.execute(""" |
| 59 | + SELECT max(end)-min(start) from CUPTI_ACTIVITY_KIND_RUNTIME; |
| 60 | + """).fetchone()[0] |
| 61 | + cursor.close() |
| 62 | + except sqlite3.Error as er: |
| 63 | + print("There was an error reading the information from the sqlite database") |
| 64 | + print('SQLite error: %s' % (' '.join(er.args))) |
| 65 | + cursor.close() |
| 66 | + sys.exit(1) |
| 67 | + |
| 68 | + if not timeline_data: |
| 69 | + print("There are no traces of gpu activity") |
| 70 | + sys.exit() |
| 71 | + gpu_activity_time = joinIntervals(timeline_data) |
| 72 | + percgpu_activity = ((gpu_activity_time["kernelOps"]+gpu_activity_time["memOps"])/cupti_api_duration)*100 |
| 73 | + data = [round(profiling_duration/NS_TIME,3), |
| 74 | + round(cupti_api_duration/NS_TIME,3), |
| 75 | + round(gpu_activity_time["kernelOps"]/NS_TIME,3), |
| 76 | + round(gpu_activity_time["memOps"]/NS_TIME,3), |
| 77 | + round(percgpu_activity,3)] |
| 78 | + |
| 79 | + return data |
| 80 | + |
| 81 | +def remove_files(curr_dir): |
| 82 | + nsysfile = os.path.join(curr_dir,"gpu_estimation.nsys-rep") |
| 83 | + sqlitefile = os.path.join(curr_dir,"gpu_estimation.sqlite") |
| 84 | + subprocess.run(["rm",nsysfile], capture_output=True, text=True) |
| 85 | + subprocess.run(["rm",sqlitefile], capture_output=True, text=True) |
| 86 | + |
| 87 | + |
| 88 | +def actual_main(args): |
| 89 | + result = subprocess.run(["which","nsys"], capture_output=True, text=True) |
| 90 | + if not result.stdout: |
| 91 | + print("Please make sure the command nsys is included in your path") |
| 92 | + print("You can try: export PATH=[path/to/bin]:$PATH") |
| 93 | + print("You can verify using:","\nwhich nsys","\nnsys --version") |
| 94 | + sys.exit(1) |
| 95 | + |
| 96 | + curr_dir = subprocess.run(["pwd"], capture_output=True, text=True).stdout.strip() |
| 97 | + nsys_output = subprocess.run(["nsys","profile","--trace=cuda,osrt","--cpuctxsw=none","--sample=none","--force-overwrite=true","--stats=true","--output=gpu_estimation","python", args.path_to_file], |
| 98 | + stdout=subprocess.PIPE, |
| 99 | + stderr=subprocess.PIPE, |
| 100 | + text=True) |
| 101 | + if nsys_output.stderr: |
| 102 | + print("An error ocurred during the analysis") |
| 103 | + print("Please make sure that your training is executing on GPU") |
| 104 | + print("Error:",nsys_output.stderr) |
| 105 | + # remove generated files |
| 106 | + remove_files(curr_dir) |
| 107 | + sys.exit(1) |
| 108 | + |
| 109 | + db_path = os.path.join(curr_dir,"gpu_estimation.sqlite") |
| 110 | + summary = sql_command_execution(db_path) |
| 111 | + headers = ["Estimate Profiling time","CUDA API Time","Kernel Ops Time","Memory Ops time","GPU Perc"] |
| 112 | + format_row = "{:^25}" * len((headers)) |
| 113 | + print(format_row.format(*headers)) |
| 114 | + print(format_row.format(*summary)) |
| 115 | + # remove generated files |
| 116 | + remove_files(curr_dir) |
| 117 | + |
| 118 | +def main(args): |
| 119 | + actual_main(args) |
0 commit comments