Skip to content

Commit 02a8656

Browse files
committed
changed entry_point naming convention
1 parent 3dbbe5d commit 02a8656

File tree

9 files changed

+31
-31
lines changed

9 files changed

+31
-31
lines changed

docs/providers.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
### Model Provider
22

33
```python
4-
def skyline_model_provider() -> torch.nn.Module:
4+
def deepview_model_provider() -> torch.nn.Module:
55
pass
66
```
77

@@ -10,7 +10,7 @@ The model provider must take no arguments and return an instance of your model (
1010
### Input Provider
1111

1212
```python
13-
def skyline_input_provider(batch_size: int = 32) -> Tuple:
13+
def deepview_input_provider(batch_size: int = 32) -> Tuple:
1414
pass
1515
```
1616

@@ -20,7 +20,7 @@ The input provider must take a single `batch_size` argument that has a default v
2020
### Iteration Provider
2121

2222
```python
23-
def skyline_iteration_provider(model: torch.nn.Module) -> Callable:
23+
def deepview_iteration_provider(model: torch.nn.Module) -> Callable:
2424
pass
2525
```
2626

@@ -72,20 +72,20 @@ class ModelWithLoss(nn.Module):
7272
return self.loss_fn(output, target)
7373

7474

75-
def skyline_model_provider():
75+
def deepview_model_provider():
7676
# Return a GPU-based instance of our model (that returns a loss)
7777
return ModelWithLoss().cuda()
7878

7979

80-
def skyline_input_provider(batch_size=32):
80+
def deepview_input_provider(batch_size=32):
8181
# Return GPU-based inputs for our model
8282
return (
8383
torch.randn((batch_size, 3, 256, 256)).cuda(),
8484
torch.randint(low=0, high=9, size=(batch_size,)).cuda(),
8585
)
8686

8787

88-
def skyline_iteration_provider(model):
88+
def deepview_iteration_provider(model):
8989
# Return a function that executes one training iteration
9090
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
9191
def iteration(*inputs):

examples/densenet/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,18 +4,18 @@
44
import densenet
55

66

7-
def skyline_model_provider():
7+
def deepview_model_provider():
88
return densenet.densenet121().cuda()
99

1010

11-
def skyline_input_provider(batch_size=16):
11+
def deepview_input_provider(batch_size=16):
1212
return (
1313
torch.randn((batch_size, 3, 224, 224)).cuda(),
1414
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
1515
)
1616

1717

18-
def skyline_iteration_provider(model):
18+
def deepview_iteration_provider(model):
1919
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2020
def iteration(*inputs):
2121
optimizer.zero_grad()

examples/gnmt/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -249,7 +249,7 @@ def forward(self, src, src_len, tgt, tgt_len):
249249
return loss / B
250250

251251

252-
def skyline_model_provider():
252+
def deepview_model_provider():
253253
args = get_args()
254254
vocab_size = 32317
255255
model_config = {
@@ -267,7 +267,7 @@ def skyline_model_provider():
267267
return model
268268

269269

270-
def skyline_input_provider(batch_size=64):
270+
def deepview_input_provider(batch_size=64):
271271
vocab_size = 32000
272272
src_len = 25
273273
tgt_len = 25
@@ -297,7 +297,7 @@ def skyline_input_provider(batch_size=64):
297297
return src, src_len_tensor, tgt, tgt_len_tensor
298298

299299

300-
def skyline_iteration_provider(model):
300+
def deepview_iteration_provider(model):
301301
args = get_args()
302302
opt_config = {
303303
'optimizer': args.optimizer,

examples/resnet/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,18 +4,18 @@
44
import resnet
55

66

7-
def skyline_model_provider():
7+
def deepview_model_provider():
88
return resnet.resnet50().cuda()
99

1010

11-
def skyline_input_provider(batch_size=16):
11+
def deepview_input_provider(batch_size=16):
1212
return (
1313
torch.randn((batch_size, 3, 224, 224)).cuda(),
1414
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
1515
)
1616

1717

18-
def skyline_iteration_provider(model):
18+
def deepview_iteration_provider(model):
1919
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2020
loss_fn = torch.nn.CrossEntropyLoss()
2121
def iteration(inputs, targets):

examples/resnet/entry_point_resnext.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,18 +4,18 @@
44
import resnet
55

66

7-
def skyline_model_provider():
7+
def deepview_model_provider():
88
return resnet.resnext50_32x4d().cuda()
99

1010

11-
def skyline_input_provider(batch_size=16):
11+
def deepview_input_provider(batch_size=16):
1212
return (
1313
torch.randn((batch_size, 3, 224, 224)).cuda(),
1414
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
1515
)
1616

1717

18-
def skyline_iteration_provider(model):
18+
def deepview_iteration_provider(model):
1919
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2020
def iteration(*inputs):
2121
optimizer.zero_grad()

examples/testnet/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,15 +13,15 @@ def forward(self, input):
1313
return self.testnet(input).sum()
1414

1515

16-
def skyline_model_provider():
16+
def deepview_model_provider():
1717
return TestNetWithLoss().cuda()
1818

1919

20-
def skyline_input_provider(batch_size=32):
20+
def deepview_input_provider(batch_size=32):
2121
return (torch.randn((batch_size, 3, 128, 128)).cuda(),)
2222

2323

24-
def skyline_iteration_provider(model):
24+
def deepview_iteration_provider(model):
2525
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2626
def iteration(*inputs):
2727
optimizer.zero_grad()

examples/transformer/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ def model_config():
8686
return opt
8787

8888

89-
def skyline_model_provider():
89+
def deepview_model_provider():
9090
opt = model_config()
9191
return TransformerWithLoss(Transformer(
9292
opt.src_vocab_size,
@@ -104,7 +104,7 @@ def skyline_model_provider():
104104
dropout=opt.dropout)).cuda()
105105

106106

107-
def skyline_input_provider(batch_size=64):
107+
def deepview_input_provider(batch_size=64):
108108
vocab_size = 32000
109109
src_seq_len = 25
110110
tgt_seq_len = 25
@@ -141,7 +141,7 @@ def skyline_input_provider(batch_size=64):
141141
return source, src_pos, target, tgt_pos, gold
142142

143143

144-
def skyline_iteration_provider(transformer):
144+
def deepview_iteration_provider(transformer):
145145
opt = model_config()
146146
optimizer = ScheduledOptim(
147147
optim.Adam(

examples/vgg/entry_point.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,18 +4,18 @@
44
import vgg
55

66

7-
def skyline_model_provider():
7+
def deepview_model_provider():
88
return vgg.vgg11().cuda()
99

1010

11-
def skyline_input_provider(batch_size=16):
11+
def deepview_input_provider(batch_size=16):
1212
return (
1313
torch.randn((batch_size, 3, 224, 224)).cuda(),
1414
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
1515
)
1616

1717

18-
def skyline_iteration_provider(model):
18+
def deepview_iteration_provider(model):
1919
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
2020
def iteration(*inputs):
2121
optimizer.zero_grad()

skyline/analysis/session.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -35,9 +35,9 @@
3535
habitat_found = False
3636

3737

38-
MODEL_PROVIDER_NAME = "skyline_model_provider"
39-
INPUT_PROVIDER_NAME = "skyline_input_provider"
40-
ITERATION_PROVIDER_NAME = "skyline_iteration_provider"
38+
MODEL_PROVIDER_NAME = "deepview_model_provider"
39+
INPUT_PROVIDER_NAME = "deepview_input_provider"
40+
ITERATION_PROVIDER_NAME = "deepview_iteration_provider"
4141
BATCH_SIZE_ARG = "batch_size"
4242

4343

@@ -355,7 +355,7 @@ def measure_throughput(self):
355355
)
356356
if len(samples) == 0 or samples[0].batch_size != self._batch_size:
357357
raise AnalysisError(
358-
"Something went wrong with Skyline when measuring your "
358+
"Something went wrong with DeepView.Profile when measuring your "
359359
"model's throughput. Please file a bug."
360360
)
361361

0 commit comments

Comments
 (0)