1
1
### Model Provider
2
2
3
3
``` python
4
- def skyline_model_provider () -> torch.nn.Module:
4
+ def deepview_model_provider () -> torch.nn.Module:
5
5
pass
6
6
```
7
7
@@ -10,7 +10,7 @@ The model provider must take no arguments and return an instance of your model (
10
10
### Input Provider
11
11
12
12
``` python
13
- def skyline_input_provider (batch_size : int = 32 ) -> Tuple:
13
+ def deepview_input_provider (batch_size : int = 32 ) -> Tuple:
14
14
pass
15
15
```
16
16
@@ -20,7 +20,7 @@ The input provider must take a single `batch_size` argument that has a default v
20
20
### Iteration Provider
21
21
22
22
``` python
23
- def skyline_iteration_provider (model : torch.nn.Module) -> Callable:
23
+ def deepview_iteration_provider (model : torch.nn.Module) -> Callable:
24
24
pass
25
25
```
26
26
@@ -72,20 +72,20 @@ class ModelWithLoss(nn.Module):
72
72
return self .loss_fn(output, target)
73
73
74
74
75
- def skyline_model_provider ():
75
+ def deepview_model_provider ():
76
76
# Return a GPU-based instance of our model (that returns a loss)
77
77
return ModelWithLoss().cuda()
78
78
79
79
80
- def skyline_input_provider (batch_size = 32 ):
80
+ def deepview_input_provider (batch_size = 32 ):
81
81
# Return GPU-based inputs for our model
82
82
return (
83
83
torch.randn((batch_size, 3 , 256 , 256 )).cuda(),
84
84
torch.randint(low = 0 , high = 9 , size = (batch_size,)).cuda(),
85
85
)
86
86
87
87
88
- def skyline_iteration_provider (model ):
88
+ def deepview_iteration_provider (model ):
89
89
# Return a function that executes one training iteration
90
90
optimizer = torch.optim.SGD(model.parameters(), lr = 1e-3 )
91
91
def iteration (* inputs ):
0 commit comments